[51nod1743]雪之国度

题目大意

给你n个点m条边的无向图,每个点有一个权值w,每条边的权值就是它连接两个点的权值差。有q个询问,给出两个点u,v,要从u到v找两条没有相同边的路径,使得两条路径上所有边权最大值最小。如果不足两条路径则输出”infinitely”。

3<=N<=100000, 3<=M<=500000, 1<=Q<=100000, 0<=Wi<=200000

分析

首先判断是否存在两条路径:显然如果两个点不在一个边双联通分量里则无解,否则一定有解。

这道题看起来不太好做,但是可以考虑下面的方法:
1. 先求出原图的mst
2. 继续按权值加非树边,然后维护双联通分量。
3. 询问时判断两个点最早什么时候在同一个双联通分量里。
这样做显然正确,问题是怎样维护答案。

首先考虑第二步。如果我在mst上加入一条非树边(u,v),考虑哪些点会被缩成双联通分量,显然是u到v的简单路径上的所有点。那么我们可以把它们缩成一个点。这样我们得到的还是一棵树,继续这样的过程即可。
然后是询问了。考虑到我们是按权值从小到大加边,那么询问u,v第一次缩在一起时,也就是u,v路径上所有点第一次缩在一起的时候。
那么缩点的时候,给路径上所有边取个min,然后询问就是路径上所有边的max值了。
由于从小到大加边,缩点可以打个并查集。询问时打个倍增即可。

时间复杂度O(nlogn)

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>

using namespace std;

const int maxn=100005,Log=18,maxm=500005,N=200000;

typedef long long LL;

int n,m,tot,q,H[maxn],e[maxn*2],nxt[maxn*2];

int Rmq[maxn*2][Log],La[maxn],GetLog[maxn*2],Dep[maxn],V[maxn],f[maxn],W[maxn];

int F[maxn][Log-1],Fa[maxn][Log-1];

bool bz[maxm],Visit[maxn];

char c;

struct Data
{
    int x,y,v;
}E[maxm];

bool cmp(Data a,Data b)
{
    return a.v<b.v;
}

int read()
{
    int x=0,sig=1;
    for (c=getchar();c<'0' || c>'9';c=getchar()) if (c=='-') sig=-1;
    for (;c>='0' && c<='9';c=getchar()) x=x*10+c-48;
    return x*sig;
}

void add(int x,int y)
{
    e[++tot]=y; nxt[tot]=H[x]; H[x]=tot;
}

int getfather(int x)
{
    if (!f[x]) return x;
    return f[x]=getfather(f[x]);
}

void Init(int x)
{
    Visit[x]=1;
    Dep[x]=Dep[Fa[x][0]]+1;
    for (int i=H[x];i;i=nxt[i]) if (e[i]!=Fa[x][0])
    {
        Fa[e[i]][0]=x;
        Init(e[i]);
    }
}

void Dfs(int x)
{
    Rmq[La[x]=tot++][0]=x;
    for (int i=H[x];i;i=nxt[i]) if (e[i]!=Fa[x][0])
    {
        Dfs(e[i]); Rmq[La[x]=tot++][0]=x;
    }
}

int getlca(int x,int y)
{
    x=La[x]; y=La[y];
    if (x>y) x^=y^=x^=y;
    int k=GetLog[y-x+1];
    return Dep[Rmq[x][k]]<=Dep[Rmq[y-(1<<k)+1][k]]?Rmq[x][k]:Rmq[y-(1<<k)+1][k];
}

int main()
{
    n=read(); m=read(); q=read();
    for (int i=1;i<=n;i++) W[i]=read();
    for (int i=0;i<m;i++)
    {
        E[i].x=read(); E[i].y=read(); E[i].v=abs(W[E[i].y]-W[E[i].x]);
    }
    sort(E,E+m,cmp);
    for (int i=0;i<m;i++)
    {
        int x=getfather(E[i].x),y=getfather(E[i].y);
        if (x!=y)
        {
            f[y]=x; bz[i]=1;
            add(E[i].x,E[i].y); add(E[i].y,E[i].x);
        }
    }
    memset(f,0,sizeof(f));
    for (int i=1;i<=n;i++) if (!Visit[i])
    {
        add(n+1,i); Fa[i][0]=n+1; Init(i);
    }
    tot=0;
    Dfs(n+1);
    for (int j=1;j<Log;j++)
        for (int i=0;i<=tot-(1<<j);i++)
            Rmq[i][j]=(Dep[Rmq[i][j-1]]<=Dep[Rmq[i+(1<<(j-1))][j-1]])?Rmq[i][j-1]:Rmq[i+(1<<(j-1))][j-1];
    for (int j=1,i=2;i<=tot;i*=2,j++) GetLog[i]=j;
    for (int i=3;i<=tot;i++) if (!GetLog[i]) GetLog[i]=GetLog[i-1];
    tot=0;
    for (int i=1;i<=n+1;i++) V[i]=N+1;
    for (int i=0;i<m;i++) if (!bz[i])
    {
        int lca=getlca(E[i].x,E[i].y);
        for (int j=getfather(E[i].x);Dep[j]>Dep[lca];j=getfather(j))
        {
            V[j]=E[i].v; f[j]=Fa[j][0];
        }
        for (int j=getfather(E[i].y);Dep[j]>Dep[lca];j=getfather(j))
        {
            V[j]=E[i].v; f[j]=Fa[j][0];
        }
    }
    for (int i=1;i<=n+1;i++) F[i][0]=V[i];
    for (int j=1;j<Log-1;j++)
    {
        for (int i=1;i<=n+1;i++)
        {
            Fa[i][j]=Fa[Fa[i][j-1]][j-1];
            F[i][j]=max(F[Fa[i][j-1]][j-1],F[i][j-1]);
        }
    }
    for (int i=0;i<q;i++)
    {
        int x=read(),y=read(),lca=getlca(x,y),ans=0;
        if (i==13874)
        ans=0;
        for (int j=Log-2;j>=0;j--)
        {
            if (Dep[Fa[x][j]]>=Dep[lca])
            {
                ans=max(ans,F[x][j]); x=Fa[x][j];
            }
            if (Dep[Fa[y][j]]>=Dep[lca])
            {
                ans=max(ans,F[y][j]); y=Fa[y][j];
            }
        }
        if (ans==N+1) printf("infinitely\n");else printf("%d\n",ans);
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值