[bzoj3679]数字之积

题目大意

一个数x各个数位上的数之积记为f(x) <不含前导零>
求[L,R)中满足0 < f(x)<=n的数的个数

100% 0 < L < R < 10^18 , n<=10^9

分析

首先很容易想到数位DP
设f[i][j]表示各位乘积为j的i位数有多少个,转移时枚举下一位的数即可。
然后求答案就相当于ans([1,R))-ans([1,L))。

但是n太大了,不过经过暴力计算,n等于 109 次方,x< 1018 时,f(x)只有5194种取值。所以只用枚举这些数,转移时打个哈希或者map即可。

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <map>

using namespace std;

const int N=20,M=5205;

typedef long long LL;

LL L,R,ans,f[N][M];

int n,tot,a[M];

map <int,int> t;

void dfs(LL x)
{
    if (x>n || t.find(x)!=t.end()) return;
    a[tot]=x;
    t.insert(make_pair(x,tot++)); ans++;
    for (int i=2;i<=9;i++) dfs(x*i);
}

LL calc(LL m)
{
    if (!n) return 0;
    LL now=1,p=1;
    int i,j,k; ans=0;
    for (i=0;p<=m/10;i++,p*=10);
    for (j=1;j<=i;j++)
        for (k=0;k<tot;k++) ans+=f[j][k];
    for (;i>=0;i--,p/=10)
    {
        for (j=1;j<m/p;j++)
        {
            for (k=0;k<tot;k++)
            {
                if (now*j*a[k]<=n) ans+=f[i][k];
            }
        }
        now*=m/p; m%=p;
        if (!now || now>n) return ans;
    }
    return ans+(now<=n);
}

int main()
{
    scanf("%d%lld%lld",&n,&L,&R);
    dfs(1);
    f[0][0]=1;
    for (int i=1;i<N;i++)
    {
        for (int j=0;j<tot;j++) if (f[i-1][j]>0)
        {
            int tmp=a[j];
            for (int k=1;k<10;k++) if (tmp<=n/k)
            {
                f[i][t.find(tmp*k)->second]+=f[i-1][j];
            }
        }
    }
    printf("%lld\n",calc(R-1)-calc(L-1));
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值