[bzoj2655] calc

8 篇文章 0 订阅
7 篇文章 0 订阅

题目大意

你可以构造一个长度为n的序列,满足:所有数都是[1,A]范围内的整数,且每个数都不相同。
给定n,A,mod,求所有合法的序列,n个数乘积的和模mod的值。(mod是个质数)

n+1 < A < mod≤ 109 n≤500

分析

dalao们都是拉格朗日插值法做的,我太弱了只会用容斥。。。

n个数各不相同,就相当于 n(n1)2 个形如x≠y的限制。如果当前一种方案不满足其中k个方案,那么它对答案的贡献就乘上容斥系数 (1)k
把每个条件看成一条边,每个数看成一个点,那么一个方案选择了其中若干条边,会形成若干个联通块。每个联通块里的数相同。
设n个点的图,所有方案的容斥系数和为g(n),n个点的连通图所有方案的容斥系数和为f(n),求f的时候,枚举1所在联通块的大小,得到:

f(n)=g(n)j=1n1f(j)g(nj)Cj1n1

考虑g(n)的值,当n=1时,图只有一个点,所以g(n)=1。
当n>1时,有大于1条边可以选或不选,选择就使容斥系数乘-1,否则乘1,可以得到g(n)=0.
最终:
f(n)={0(n1)f(n1),1,n>1n=1

接下来考虑一个n个点的连通图的答案。每个数都是一样的,现在枚举它的取值,可以得到:
Ans(n)=i=1Ain

这是个自然数幂和,求和的方法有很多,这里不讲了。
那么给n个点分成若干个联通块,然后每一部分的答案与容斥系数的累乘就是答案了。
假设当前一个划分方案中,大小为i的联通块有ai个,即 ni=1iai=n ,那么把n个点分到这些联通块里的方案数是:
n!ni=1i!aiai!

现在可以设DP方程了。设f[i][j]表示划分j个点,其中最大的联通块大小为i的答案。枚举大小为i的联通块有k个。
f[i][j]=k=0jif[i1][jik](g[i]Ans(i))k1i!kk!

最后答案是 f[n][n]n!

时间复杂度 O(n2logn)

#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

const int N=505;

typedef long long LL;

int A,n,mo,f[N][N],g[N],ans,Fac[N],Inv[N],Fac_Inv[N],p[N],b[N];

int C(int n,int m)
{
    return (LL)Fac[n]*Fac_Inv[m]%mo*Fac_Inv[n-m]%mo;
}

int main()
{
    scanf("%d%d%d",&A,&n,&mo);
    g[0]=g[1]=Fac[0]=Fac[1]=Inv[1]=Fac_Inv[0]=Fac_Inv[1]=1;
    for (int i=2;i<=n+1;i++)
    {
        g[i]=-(LL)(i-1)*g[i-1]%mo;
        Fac[i]=(LL)Fac[i-1]*i%mo;
        Inv[i]=(LL)Inv[mo%i]*(mo-mo/i)%mo;
        Fac_Inv[i]=(LL)Fac_Inv[i-1]*Inv[i]%mo;
    }
    b[0]=1;
    for (int i=1;i<=n+1;i++)
    {
        b[i]=0;
        for (int k=0;k<i;k++) b[i]=(b[i]+(LL)C(i+1,k)*b[k]%mo)%mo;
        b[i]=(LL)b[i]*(-Inv[i+1])%mo;
    }
    for (int i=1;i<=n;i++)
    {
        p[i]=0;
        for (int j=1,k=A+1;j<=i+1;j++,k=(LL)k*(A+1)%mo) p[i]=(p[i]+(LL)C(i+1,j)*b[i+1-j]%mo*k)%mo;
        p[i]=(LL)p[i]*Inv[i+1]%mo;
    }
    f[0][0]=1;
    for (int i=1;i<=n;i++)
    {
        for (int k=0,tmp=1;k*i<=n;k++,tmp=(LL)tmp*g[i]%mo*p[i]%mo*Inv[k]%mo*Fac_Inv[i]%mo)
        {
            for (int j=k*i;j<=n;j++) f[i][j]=(f[i][j]+(LL)f[i-1][j-k*i]*tmp%mo)%mo;
        }
    }
    f[n][n]=((LL)f[n][n]*Fac[n]%mo+mo)%mo;
    printf("%d\n",f[n][n]);
    return 0;
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值