[codeforces856C]Eleventh Birthday

19 篇文章 0 订阅
博客分析了一道codeforces的题目,探讨如何确定一个由n个正整数组成的大数有多少种排列方式使其成为11的倍数。通过观察奇偶数位对模11贡献的差异,提出动态规划的解决方案,详细阐述了状态转移方程,并给出了时间复杂度为O(11n^2)的算法思路。
摘要由CSDN通过智能技术生成

题目大意

给定n个正整数,你需要把它们按任意顺序拼接,得到一个大数。问有多少种方案使得最终得到11的倍数。如果两个数相同,它们交换位置也算不同方案。答案对998244353取模

n≤2000
数字≤ 109

分析

找突破口。
我们发现,一个数的奇数位每加1,对模11的余数的贡献是1,偶数为每加1,贡献是-1。
证明? 101(mod11)
我们跟着这个思路走下去。对于一个数,它放在最终数中的奇数位时贡献为正,放在偶数位贡献为负。
在奇数位放一个十进制下有偶数个数位的数,下一个数也一定是被放在奇数位的,偶数位相同。
在奇数位放一个十进制下有奇数个数位的数,下一个则会被放在偶数位。放在偶数位则相反。
设n个数中有s0个偶数个数位的数,s1个奇数个数位的数,那么被放在偶数位上的奇数个数位的数恰有 s12
那么我们可以dp:设f[i][j][k]表示前i个奇数个数位的数中,放了j个到奇数位,模11余k的方案数。对于偶数个数位的也一样。转移时只需考虑第i个怎么放即可。
最后合并答案时,枚举有多少个偶数个数位的数放在偶数位,用对应的dp值乘上几个阶乘和组合数即可。

时间复杂度 O(11n2)

#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

const int N=2018,mo=998244353;

typedef long long LL;

int n,Fac[N],Inv[N],f[N][N][11],g[N][N][11],ans,a[N],b[N],s1,s0,t;

int C(int n,int m)
{
    if (!n) return m>0;
    return (LL)Fac[n+m-1]*Inv[m]%mo*Inv[n-1]%mo;
}

void work()
{
    scanf("%d",&n);
    for (int i=0;i<=n;i++) for (int j=0;j<=n;j++) for (int k=0;k<11;k++) f[i][j][k]=g[i][j][k]=0;
    s0=s1=0;
    for (int l,j,i=1,x;i<=n;i++)
    {
        scanf("%d",&x);
        for (j=x,l=0;j>0;j/=10) l^=1;
        if (l) a[++s1]=x%11;else b[++s0]=x%11;
    }
    if (!s1)
    {
        int res=0;
        for (int i=1;i<=n;i++) res=(res+b[i])%11;
        if (res) printf("0\n");else
        {
            ans=1;
            for (int i=1;i<=n;i++) ans=(LL)ans*i%mo;
            printf("%d\n",ans);
        }
        return;
    }
    f[0][0][0]=g[0][0][0]=1;
    for (int i=1;i<=s1;i++)
    {
        for (int j=0;j<=i;j++)
        {
            for (int k=0,p,q;k<11;k++)
            {
                p=(k-a[i]+11)%11; q=(k+a[i])%11;
                f[i][j][k]=(f[i][j][k]+f[i-1][j][p])%mo;
                if (j>0) f[i][j][k]=(f[i][j][k]+f[i-1][j-1][q])%mo;
            }
        }
    }
    for (int i=1;i<=s0;i++)
    {
        for (int j=0;j<=i;j++)
        {
            for (int k=0,p,q;k<11;k++)
            {
                p=(k-b[i]+11)%11; q=(k+b[i])%11;
                g[i][j][k]=(g[i][j][k]+g[i-1][j][p])%mo;
                if (j>0) g[i][j][k]=(g[i][j][k]+g[i-1][j-1][q])%mo;
            }
        }
    }
    ans=0;
    for (int i=0;i<=s0;i++) for (int j=0;j<11;j++)
    {
        ans=(ans+(LL)g[s0][i][j]*f[s1][s1>>1][(11-j)%11]%mo*C(s1/2+1,s0-i)%mo*C((s1+1)/2,i)%mo*Fac[s1>>1]%mo*Fac[s1-s1/2]%mo*Fac[s0-i]%mo*Fac[i])%mo;
    }
    printf("%d\n",ans);
}

int main()
{
    Fac[0]=Fac[1]=Inv[0]=Inv[1]=1;
    for (int i=2;i<N;i++)
    {
        Fac[i]=(LL)Fac[i-1]*i%mo; Inv[i]=(LL)Inv[mo%i]*(mo-mo/i)%mo;
    }
    for (int i=2;i<N;i++) Inv[i]=(LL)Inv[i-1]*Inv[i]%mo;
    for (scanf("%d",&t);t--;work());
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值