机器学习算法基础--特征选择,主成分分析,sklearn数据集,KNN

本文介绍了机器学习中的数据降维方法,包括特征选择和主成分分析。特征选择通过VarianceThreshold进行过滤,删除低方差特征。主成分分析(PCA)用于降低数据维度,尽量减少信息损失。此外,还概述了机器学习算法分类、开发流程以及sklearn数据集的使用,特别强调了sklearn.datasets API的功能和返回类型。最后,讨论了k-近邻(KNN)算法,指出其优点和缺点。
摘要由CSDN通过智能技术生成

数据降维

定义:减少特征数量
数据降维分为两种:

  • 特征选择:单纯地从提取到的所有特征中选择部分特征作为训练集特征,特征在选择前和选择后可以改变值,也可以不改变值,但是选择后的特征维数肯定比选择前小
  • 主成分分析

特征选择

  • 主要方法:
    1.Filter(过滤式):Variance Threshold
    2.Embedded(嵌入式):正则化、决策树
    3.Wrapper(包裹式)
VarianceThreshold(threshold=0.0)
  • 删除所有低方差特征
  • Variance.fit_transform(x)
    其中:
    X:numpy array格式的数据[n_samples,n_features]
    返回值:训练集差异低于threshold 的特征将被删除,默认值是保留所有非零方差特征,即删除所有样本中具有相同值的特征

使用:

from sklearn.feature_selection import  VarianceThreshold


def var():
    """
    特征选择-删除低方差的特征
    :return: None
    """
    var = VarianceThreshold(threshold=0.0)
    data = var.fit_transform([[0,2,0,3],[0,1,4,3],[0,1,1,3]])
    print(data)
if __name__ == '__main__':
    var()

输出:

[[2 0]
 [1 4]
 [1 1]]
主成分分析
  • api:sklearn.decomposition
  • 定义:PCA是一个种分析、简化数据集的技术,是数据维数压缩,尽可能降低元数据的维数(复杂度),损失少量信息,可以削减回归分析或者聚类分析中特征的数量(当特征数量达到上百个以上时可以选择使用)
  • 方法:PCA(n_component=None)→将数据分解为较低维数空间

机器学习算法分类

  • 监督学习(预测):特征值+目标值
    • 分类:K-邻近算法、贝叶斯分类、决策树与随机森林、逻辑回归、神经网络,目标值离散型
    • 回归:线性回归、岭回归,目标值连续型
    • 标注:隐马尔可夫模型
  • 无监督学习:特征值
    • 聚类:k-means

机器学习开发流程

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值