广度优先搜索 BFS

广度优先搜索算法

 

一.宽度优先搜索的过程

宽度优先搜索算法是最简便和常用的图形搜索算法之一,这一算法也是很多重要的图的算法的原型。Dijkstra单源最短路径算法和Prim最小生成树算法都采用了和宽度优先搜索类似的思想。

宽度优先算法的核心思想是:从初始节点开始,应用算符生成第一层节点,检查目标节点是否在这些后继节点中,若没有,再用产生式规则将所有第一层的节点逐一扩展,得到第二层节点,并逐一检查第二层节点中是否包含目标节点。若没有,再用算符逐一扩展第二层的所有节点……,如此依次扩展,检查下去,直到发现目标节点为止。即

1、从图中的某一顶点V0开始,先访问V0;

2、访问所有与V0相邻接的顶点V1,V2,......,Vt;

3、依次访问与V1,V2,......,Vt相邻接的所有未曾访问过的顶点;

4、循此以往,直至所有的顶点都被访问过为止。

5、这种搜索的次序体现沿层次向横向扩长的趋势,所以称之为广度优先搜索。

对同一层结点来说,一般按先生成先扩展的顺序进行,因此在数据结构上引入了“队列”结构。“队列” 是一种线性表,具有先进先出的特点,对于它所有的插入和删除操作分别仅在队列尾和队列首进行。

 

二、广度优先搜索算法描述:

Program Bfs;

初始化,初始状态存入OPEN表;

队列首指针head:=0;尾指针tail:=1;

repeat

    指针head后移一位,指向待扩展结点;

    for I=1 to max do     {max为产生子结点的规则数}

    begin

      if 子结点符合条件 then

         begin

           tail指针增1,把新结点存入列尾;

           if新结点与原已产生结点重复then删去该结点(取消入队,tail减1)

   else

       if新结点是目标结点then输出并退出;

 end;

end;

    until(tail>=head);   {队列空}

 

三、广度优先搜索注意事项:

1、每生成一个子结点,就要提供指向它们父亲结点的指针。当解出现时候,通过逆向跟踪,找到从根结点到目标结点的一条路径。

2、生成的结点要与前面所有已经产生结点比较,以免出现重复结点,浪费时间,还有可能陷入死循环。

3、如果目标结点的深度与“费用”(如:路径长度)成正比,那么,找到的第一个解即为最优解,这时,搜索速度比深度搜索要快些;如果结点的“费用”不与深度成正比时,第一次找到的解不一定是最优解。

4、广度优先搜索的效率还有赖于目标结点所在位置情况,如果目标结点深度处于较深层时,需搜索的结点数基本上以指数增长。

 

下面我们看看怎样用宽度优先搜索来解决八数码问题。

 

例如 图2给出广度优先搜索应用于八数码难题时所生成的搜索树。搜索树上的所有结点都标记它们所对应的状态,每个结点旁边的数字表示结点扩展的顺序。粗线条路径表明求得的一个解。从图中可以看出,扩展26个结点和生成46个结点之后,才求得这个解。此外,直接观察此图表明,不存在有更短走步序列的解。

                   图2 广度优先搜索图                       

  程序实现算法:

  Program BFS;

   建立数据库data;数据库赋初值;

   设队列头指针H:=0;队列尾指针L:=1;

   repeat

    取下一个H所指的结点;

    for i:=1 to max do {i为产生新结点规则编号}

     begin

     L增1,把新结点存入数据库队尾;记录父结点的位置;

      if 新结点与原有结点重复 then

      删去该结点(L减1)

      else

       if 新结点为目标结点 then 输出并退出;

     end;

    end;

   until H>=L {队列为空}

 

程序:

program 8no_bfs; {八数码的宽度优先搜索算法}

 

Const

  Dir : array[1..4,1..2]of integer       {四种移动方向,对应产生式规则}

      = ((1,0),(-1,0),(0,1),(0,-1));

  N=10000;

 

Type

  T8No = array[1..3,1..3]of integer;

 

  TList = record

    Father : integer;              {父指针}

    dep : byte;                          {深度}

    X0,Y0 : byte;                              {0的位置}

    State : T8No;               {棋盘状态 }

  end;

 

Var

  Source,Target : T8No;

  List : array[0..10000] of TList;              {综合数据库 }

  Closed,Open,Best : integer                 { Best表示最优移动次数}

  Answer : integer;                         {记录解}

  Found : Boolean;                         {解标志}

 

  procedure GetInfo;                        {读入初始和目标节点}

  var i,j : integer;

  begin

    for i:=1 to 3 do

      for j:=1 to 3 do read(Source[i,j]);

    for i:=1 to 3 do

      for j:=1 to 3 do read(Target[i,j]);

  end;

 

  procedure Initialize;                       {初始化}

  var x,y : integer;

  begin

    Found:=false;

    Closed:=0;Open:=1;   

with List[1] do begin

      State:=Source;dep:=0;Father:=0;

      For x:=1 to 3 do

        For y:=1 to 3 do

          if State[x,y]=0 then Begin x0:=x;y0:=y; End;

    end;

  end;

 

  Function Same(A,B : T8No):Boolean;        {判断A,B状态是否相等 }

  Var  i,j : integer;

  Begin

    Same:=false;

    For i:=1 to 3 do for j:=1 to 3 do if A[i,j]<>B[i,j] then exit;

    Same:=true;

  End;

 

  function Not_Appear(New : tList):boolean;    {判断New是否在List中出现,可用康托展开实现映射,建立hash表,用O(1)的时间复杂度判重}

  var i : integer;

  begin

    Not_Appear:=false;

    for i:=1 to Open do if Same(New.State,List[i].State) then exit;

    Not_Appear:=true;

  end;

 

  procedure Move(N : tList;d : integer;var ok : boolean;var New : tList);

  {将第d条规则作用于N得到New,OKNew是否可行的标志 }

  var x,y : integer;

  begin

    X := N.x0 + Dir[d,1];

    Y := N.y0 + Dir[d,2];

    {判断New的可行性}

    If not ((X > 0) and ( X < 4 ) and ( Y > 0 ) and ( Y < 4 )) then begin ok:=false;exit end;

    OK:=true;

New.State:=N.State;    {New=Expand(N,d)}

    New.State[X,Y]:=0;

    New.State[N.x0,N.y0]:=N.State[X,Y];

    New.X0:=X;New.Y0:=Y;

  end;

 

  procedure Add(new : tList);                       {插入节点New}

  begin

    If not_Appear(New) then Begin                  {如果New没有在List出现 }

      Inc(Open);                                 {New加入Open }

      List[Open] := New;

     end;

  end;

 

  procedure Expand(Index : integer; var N : tList);       {扩展N的子节点}

  var i : integer;

      New : tList;

      OK : boolean;

  Begin

    If Same(N.State , Target) then begin                {如果找到解}

     Found := true;

     Best :=N.Dep;

     Answer:=Index;

     Exit;

    end;

    For i := 1 to 4 do begin                          {依次使用4条规则}

      Move(N,i,OK,New);

      if not ok then continue;

New.Father := Index;

      New.Dep :=N.dep + 1;

      Add(New);

    end;

  end;

 

  procedure GetOutInfo;                            {输出}

    procedure Outlook(Index : integer);                {递归输出每一个解}

    var i,j : integer;

    begin

      if Index=0 then exit;

      Outlook(List[Index].Father);

      with List[Index] do                           

      for i:=1 to 3 do begin

        for j:=1 to 3 do write(State[i,j],' ');

        writeln;

      end;

      writeln;

    end;

  begin

    Writeln('Total = ',Best);

    Outlook(Answer);

  end;

 

  procedure Main;                           {搜索主过程}

  begin

    Repeat

      Inc(Closed);

      Expand(Closed,List[Closed]);            {扩展Closed}

    Until (Closed>=Open) or Found;

    If Found then GetOutInfo                 {存在解}

             else Writeln('No answer');        {无解}

  end;

 

Begin

  Assign(Input,'input.txt');ReSet(Input);

  Assign(Output,'Output.txt');ReWrite(Output);

  GetInfo;

  Initialize;

  Main;

  Close(Input);Close(Output);

End.

 

例1 在一个瓶中装有80毫升化学溶剂,实验中需要精确地平分成两份,没有量具,只有两个杯子,其中一个杯子的容量是50毫升,另一个是30毫升,试设计一个程序将化学溶剂对分成两个40毫升,并以最少步骤给出答案。(文件名:EX1.PAS)

输出(EX1.OUT):

Start:80 0 0

Step No.1:30 50  0

Step No.2:30 20 30

Step No.3:60 20  0

Step No.4:60  0 20

Step No.5:10 50 20

Step No.6:10 40 30

Step No.7:40 40  0

End.

 

分析:三个杯子水的初始状态为:80、0、0,生成新结点状态的方法为:将一个不空的杯子水倒入一个不满的杯中,且结点状态不重复,直到生成目标结点为止。

算法步骤:

1、数据库: 用数组d构成存放生成结点(杯子水状态)的队;数组p作为指向父结点的指针;t和s作为队头与队尾指针。

2、结点的产生:

 (1)将结点中不空的杯子水倒入一个不满的杯子中,生成新的结点并记下父结点位置;

 (2)判断新结点是否已生成过,以避免死循环;

 (3)生成的结点若为目标结点,输出。

3、搜索策略: 广度优先搜索。

 

源程序如下:

program ex1;

type

   status= array [1..3] of integer;

const

   v: array [1..3] of integer =(80,50,30);

var

   d: array [1..200] of status;

   p: array [1..200] of integer;

   t,s,i,j: integer;

procedure draw(f: integer);{输出}

var

  m: array [1..20] of integer;

  i,j,k: integer;

begin

  j:=0;

  while f<>1 do begin

    inc(j);

    m[j]:=f;

    f:=p[f];

  end;

  writeln;

  writeln('Start: ',d[1,1]:3,d[1,2]:3,d[1,3]:3);

  for i:=j downto 1 do begin

    write('Step No.',j+1-i,': ');

    for k:=1 to 3 do write(d[m[i],k]:3);

    writeln;

  end;

  writeln('End.');

  halt;

end;

 

function exampass(w: integer): boolean;{新结点是否以前生成过}

var

  i: integer;

begin

  for i:=1 to w-1 do

  if (d[i,1]=d[w,1]) and (d[i,2]=d[w,2]) and (d[i,3]=d[w,3])

  then begin

    exampass:=false;

    exit;

  end;

  exampass:=true;

end;

 

function isobject(w: integer): boolean;{是否为目标结点}

begin

    if (d[w,1]=40) and (d[w,2]=40) then isobject:=true

    else isobject:=false;

end;

 

begin {生成新结点,将一个不空的杯子水倒入一个不满的杯子中}

  assign(output,'ex1.out');

  rewrite(output);

   

  d[1,1]:=80; d[1,2]:=0; d[1,3]:=0;

  p[1]:=0;

  t:=1; s:=2;

  repeat

  for i:=1 to 3 do

    if d[t,i]<>0 then

      for j:=1 to 3 do

        if (i<>j) and (d[t,j]<>v[j]) then begin

          d[s]:=d[t];

          d[s,j]:=d[s,j]+d[s,i];

          d[s,i]:=0;

          if d[s,j]>v[j] then begin

            d[s,i]:=d[s,j]-v[j];

            d[s,j]:=v[j];

          end;

          p[s]:=t;

          if exampass(s) then begin

             if isobject(s) then draw(s);

             inc(s);

          end;

        end;

  inc(t);

  until t>=s;

  writeln('NoWay');

  close(output);

end.

 

  例2 跳棋的原始状态如下图。其中"0"表示空格,"-"表示白子,"+"表示黑子,"1--7"表示棋盘格编号。跳棋的规则是:

  ⒈任意一个棋子可移到相邻的空位上;

  ⒉可跳过一个或两个棋子到空位上,与跳过的棋子的颜色无关;

  ⒊棋子向左向右跳不限。

  例如:4到1、5到4、3到5、6到3是成功的四步走法。请编一程序,用10步完成从原始状态跳变成目标状态。要求打印跳每一步后的状态。用数字表示棋盘格子的代号。

          1 2 3 4 5 6 7

      原始位置 0 - - - + + +

      目标位置 + + + - - - 0

  分析:此题可以用广度与深度搜索两种方法求解,通过运行两种解法的程序,我们可以粗略地知道两种算法的区别。 

 

  算法步骤:

  ⒈数据库:数组g构成队,存放棋子的状态;数组p作为指针指向其父结点位置;t与s分别表示队头与队尾指针。

  ⒉结点的产生:与位置间距-3到3的棋子可移入空位,生成新结点状态。

  ⒊搜索策略:广度优先搜索。

 

源程序如下:

program ex143-1; {广度优先搜索}

uses time;

type

 status=string[7];

const

 start: status ='0---+++';

 obj: status ='+++---0';

var

 a,b,c: timetype;

 g: array [1..200] of status;

 p: array [1..200] of integer;

 i,j,k: integer;

 t,s: integer;

procedure draw(f: integer);{输出}

var

 m: array [1..10] of integer;

 i,j: integer;

begin

 j:=0;

 while f<>1 do begin

  inc(j);

  m[j]:=f;

  f:=p[f];

 end;

 writeln;

 writeln('Start: ',start);

 for i:=j downto 1 do

  writeln('Step No.',j+1-i,': ',g[m[i]]);

 writeln('End');

 gettimenow(b);

 howlong(a,b,c);

 printtime('Time Take: ',c);

 halt;

end;

function exampass(w: integer): boolean;{判断结点有否重复}

var

 i: integer;

begin

 for i:=1 to w-1 do

  if g[i]=g[w] then begin

   exampass:=false;

   exit;

  end;

 exampass:=true;

end;

begin {生成新结点}

 gettimenow(a);

 g[1]:=start; p[1]:=0;

 t:=1; s:=2;

 repeat

  k:=pos('0',g[t]);

  for i:=-3 to 3 do

   if (i<>0) and (k+i>=1) and (k+i<=7) then begin

    g[s]:=g[t];

    g[s,k]:=g[s,k+i]; g[s,k+i]:='0';

    p[s]:=t;

    if exampass(s) then begin

     if g[s]=obj then draw(s);

     inc(s);

    end;

   end;

  inc(t);

 until t>=s;

 writeln('NoWay');

end.

 

算法(二):

  1、数据库:数组g构成堆栈,存放棋子的状态。

  2、结点的产生:与空位置间距-3到3的棋子可移入空位,生成新结点状态。

  3、搜索策略:含有深度界限的深度优先搜索。

 

源程序如下:

program ex143-2;   {深度优先搜索}

uses time;

type

 status=string[7];

const

 start: status ='0---+++';

 obj: status ='+++---0';

var

 a,b,c: timetype;

 g: array [0..10] of status;

 i,j,k: integer;

procedure draw;{输出}

var

 i,j: integer;

begin

 writeln('Start: ',start);

 for i:=1 to 10 do

  writeln('Step No.',i,': ',g[i]);

 writeln('End');

 gettimenow(b);

 howlong(a,b,c);

 printtime('Take Time: ',c);

 halt;

end;

function exampass(w: integer): boolean;{判断有否重复状态}

var

 i: integer;

begin

 for i:=1 to w-1 do

  if g[i]=g[w] then begin

   exampass:=false;

   exit;

  end;

 exampass:=true;

end;

procedure run(t: integer);{搜索生成新结点}

var

 i,k: integer;

begin

 k:=pos('0',g[t-1]);

 for i:=-3 to 3 do

  if (i<>0) and (k+i>=1) and (k+i<=7) then begin

   g[t]:=g[t-1];

   g[t,k]:=g[t,k+i]; g[t,k+i]:='0';

   if exampass(t) then

    if g[t]=obj then draw

    else

    if t<10 then run(t+1);

  end;

end;

begin

 gettimenow(a);

 g[0]:=start;

 run(1);

end.

 

运行两种算法程序可以发现,广度优先搜索运行速度比深度优先搜索快。那么深度优先搜索与广度优先搜索算法有何区别呢?

通常深度优先搜索法不全部保留结点,扩展完的结点从数据库中弹出删去,这样,一般在数据库中存储的结点数就是深度值,因此它占用空间较少。所以,当搜索树的结点较多,用其它方法易产生内存溢出时,深度优先搜索不失为一种有效的求解方法。

广度优先搜索算法,一般需存储产生的所有结点,占用的存储空间要比深度优先搜索大得多,因此,程序设计中,必须考虑溢出和节省内存空间的问题。但广度优先搜索法一般无回溯操作,即入栈和出栈的操作,所以运行速度比深度优先搜索要快些。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值