- 博客(579)
- 资源 (36)
- 收藏
- 关注
原创 灰色关联度分析简单示例
年份 | GDP (X₀) | 固定资产投资 (X₁) | 社会消费品零售总额 (X₂) | 进出口总额 (X₃) || 年份 | Δ₁ (X₀'-X₁') | Δ₂ (X₀'-X₂') | Δ₃ (X₀'-X₃') || 年份 | ξ₁ (X₁) | ξ₂ (X₂) | ξ₃ (X₃) || 年份 | X₀' | X₁' | X₂' | X₃' || 社会消费品零售总额 (X₂) | 0.756 | 2 || 固定资产投资 (X₁) | 0.58 | 3 || 影响因素 | 关联度 | 排序 |
2025-07-28 09:26:17
323
原创 模糊综合评估法简单示例
当评价因素本身界限不清晰、评价标准具有主观性、难以用精确的“是”或“否”来判断时(例如:评价“服务质量好”、“环境舒适”、“风险高”),传统精确数学方法就显得力不从心。模糊综合评估法引入“隶属度”的概念,用0到1之间的数值来描述某个对象隶属于某个模糊概念(如“好”、“中”、“差”)的程度,从而更客观、合理地处理这类模糊评价问题。良好(b₂) = 0.4×0.3 + 0.3×0.4 + 0.2×0.3 + 0.1×0.2 = 0.32。设定分值:优秀=100,良好=80,一般=60,较差=40。
2025-07-25 15:20:54
381
原创 OpenAI最新大模型GPT-4o体验之Code Copilot AI编程大模型
ChatGPT4o功能:GPT-4o文本对话(支持联网查询)、Code Copilot(写代码、改bug、算法优化等)、DALL-E AI绘画、AI语音对话(练习英语口语、模拟技术面试)、论文插件Consensus、专职家教(精通语数外,拍照上传即可识别问题,给出权威回答,亦可用于模拟考试)、上传文件、数据分析插件Data Analyst等100+GPTS插件。网址:https://ssas.kupepoem.cn支持OpenAI最新的ChatGPT4o。同时支持PC、手机、平板。
2025-07-24 21:57:27
678
1
原创 AI大模型资源
text{ln\_sav}_{it} = \ln(\frac{\text{城市 } i \text{ 在年份 } t \text{ 的城乡居民储蓄存款余额}{\text{城市 } i \text{ 在年份 } t \text{ 的年末常住人口}})若遇到商店打不开的情况,或有售前、售后、授权码续费保留聊天记录或购买等需求,联系下面微信,备注:ai。gemini-2-5-pro-plus:30次/24h。gemini-2-5-pro:30次/24h。GPT-4-1-mini: 100次/24h。
2025-07-24 20:41:16
640
原创 ANP算法的简单例子
下面我将通过一个简化的ANP例子,详细演示每一步计算过程,两个准则(性能和价格),每个准则包含两个子元素,两个备选方案(手机A和B)。决策意义:ANP通过量化元素间的反馈关系(如性能↔价格),比AHP更适用于复杂网络决策。C1列P1行=0.25:购买价格(C1)影响CPU(P1)的权重。P1列C1行=0.833:CPU(P1)影响购买价格(C1)的权重。1) 性能簇:CPU速度(P1)、内存容量(P2)2) 价格簇:购买价格(C1)、耗电成本(C2)2)性能 → 方案、价格 → 方案(准则影响方案)
2025-07-24 11:37:08
427
原创 AHP算法简单示例
GM_B = (0.143 * 0.333 * 0.2 * 1)^(1/4) = (0.0095)^(0.25) ≈ 0.312 (计算:(1/7)*(1/3)*(1/5)*1 ≈ 0.1429*0.3333*0.2 ≈ 0.00952)GM_Pr = (0.2 * 1 * 0.333 * 3)^(1/4) = (0.2)^(0.25) ≈ 0.669(计算:(1/5)*1*(1/3)*3 = (1/5)*(1/3)*3 = (1/15)*3 = 1/5 = 0.2)这些值反映了他的个人偏好和判断。
2025-07-22 09:39:35
910
原创 QPushButton设置菜单
/ 分离主按钮和菜单按钮。想单击按钮不弹出菜单,以为菜单是自己开发控制的,找了半天没有找到单击触发函数,原来qt中QPushButton可以设置菜单。在Qt中,可以通过QPushButton的setMenu()方法为其添加下拉菜单。3 禁用菜单项:action->setEnabled(false)。4 关联菜单:用button.setMenu(menu)设置菜单。-2菜单项图标:使用action->setIcon()添加图标。3 添加菜单项:使用menu.addAction()添加动作。
2025-05-30 18:18:56
617
原创 C++将地址转换为字符串
3 无前缀处理:需要纯十六进制数字时,使用方法三,但需确保 uintptr_t可用(C++11及以上)。直接利用流输出指针,自动格式化为十六进制并包含 `0x` 前缀。若需不带0x前缀,可将指针转换为 uintptr_t后输出为十六进制。通过C风格函数将指针格式化为字符串,需显式转换为 `void*`。1 默认格式:方法一和方法二生成的字符串通常包含 0x前缀。// 转换为 void* 确保类型正确。
2025-05-27 17:21:01
496
原创 已将析构函数隐式定义为“已删除”错误
在C++中,当联合体(union)的某个成员拥有非平凡的析构函数(如 std::string)时,联合体的析构函数会被隐式删除。2 隐式删除析构函数:若联合体包含需要析构的非平凡类型(如 std::string),编译器无法隐式生成析构函数,导致其被标记为 `= delete`。// 显式调用std::string的析构函数。特殊成员函数:联合体默认的复制/移动操作可能被删除,需手动实现(遵循三/五法则)。// 析构函数:根据标签调用对应成员的析构函数。// 标签,记录当前活跃的成员类型。
2025-05-22 17:38:28
376
原创 多线程环境下结构体赋值是否具有原子性?
对于基本数据类型(如 int、bool),某些情况下单次读/写可能是原子的,但结构体通常包含多个字段,其赋值操作可能涉及多个内存地址的修改,因此一般不具备原子性。1 数据大小:如果结构体的大小超过 CPU 的原子操作支持范围(例如,x86 中 8 字节的 mov 指令是原子的,但更大数据可能分多次操作)。x86/64:自然对齐的 8 字节数据(如 `int64_t`)的读写是原子的,但更大的结构体不保证。ARM:需要显式原子指令(如 LDREX/STREX),默认不保证原子性。// GCC 内存屏障。
2025-05-20 18:22:07
431
原创 bool变量在多线程中使用是否线程安全?
1) 无锁优化:若硬件保证原子性(如x86),可直接用`std::atomic<bool>,默认内存顺序memory_order_seq_cst保证可见性。编译器优化:编译器可能优化掉“无意义”的读取(如循环中重复读取`bool`),需用`volatile`或原子操作禁止此类优化。多线程同时写:若多个线程同时修改bool,即使单次写入是原子的,结果仍可能不确定(最后一次写入生效,但无法保证顺序)。),则不具备原子性,需额外同步。一写多读:单一写线程搭配其他读线程时,若未同步,读线程可能无法及时看到更新。
2025-05-20 17:45:31
407
原创 QImage高效率像素操作的方法
/ 通常为w*4 (32bpp)3 使用QImage::Format_ARGB32_Premultiplied可避免重复预乘运算。1 修改bits()前需调用bits()触发detach(确保深拷贝)。2 直接内存访问(避免pixel/setPixel)预先计算循环边界,使用指针递增代替二维索引。4 对8位索引颜色格式需先转换为直接颜色格式。// 通过位操作访问颜色分量。// 跳过行尾填充字节(如果有)// ...处理行...// 分割为4个水平条带。// 等待所有任务完成。
2025-05-15 17:38:19
486
原创 等经纬度投影下求经纬度的行列号
此实现确保了全球范围的覆盖,适用于需要将经纬度快速映射到网格的应用场景,如地理信息系统和遥感数据处理。该实现将地球的经纬度范围划分为固定分辨率的网格,每个网格对应一个行列号。1 分辨率选择:较小的delta会生成更密集的网格,但需注意浮点精度问题。lon:经度,自动规范到[-180.0, 180.0)。lat:纬度,范围应在[-90.0, 90.0]之间。1 经度规范化:将经度调整到[-180, 180)范围内。delta:网格分辨率(单位:度),必须为正数。a 将经度转换为0到360之间的偏移量。
2025-05-14 15:46:19
357
原创 vs2015多线程编译
4. 菜单栏,"Debug" -> "Options and Settings" -> "Projects and Solutions" -> "VC+ Project Settings" ->"Maximum concurrent C++ compilations" 设置最大C++编译并发线程数,设置为0代表最大的并发线程数。visual studio在编译时可以启动多核并行编译,以减少编译所需时间。1. Solution Explorer导航窗口右键需要并行编译的项目,进入属性页面。
2025-05-13 07:31:09
319
原创 快速排序算法中的Lomuto分区
j=2, 元素 2 ≤ 4→ i=1, 交换 arr[1]和 arr[2] → 数组变为 [3, 2, 7, 5, 1, 4]。j=4, 元素 1 ≤ 4 → i=2, 交换 arr[2]和 arr[4] → 数组变为 [3, 2, 1, 5, 7, 4]。最终基准值 4位于索引 3,左子数组 [3, 2, 1]≤ 4,右子数组 [7, 5]> 4。放置基准值:交换 i+1=3和 high=5→ 数组变为 [3, 2, 1, 4, 7, 5]。
2025-04-14 15:23:07
541
原创 快速排序算法
由于所有元素均大于 2,基准被交换到索引 0,数组变为 [2,5,7,8,6]。分区后,5 < 6被保留在左侧,7 和 8 大于 6,最后交换基准到正确位置,数组变为 [2,5,6,8,7]。分区后,8 > 7 被交换到右侧,基准 7 被放到正确位置,数组变为 [2,5,6,7,8]。此时基准位置 pi=0,递归处理左半部分(空)和右半部分 [5,7,8,6]。对整个数组 [6,5,7,8,2]进行排序,low=0,high=4。三 分步说明(以数组 [6, 5, 7, 8, 2]为例)
2025-04-14 11:13:37
478
原创 两个有序序列合并算法分析
2) 交换片段:将左子数组的 arr[i..mid]与右子数组的 arr[mid+1..j] 交换(使用手摇算法)。// 合并两个有序子数组 arr[left..mid] 和 arr[mid+1..right]- **最坏情况**:每次合并需交换最大片段,时间复杂度 $O(n \log n)$。- **最佳情况**:两个子数组天然有序,时间复杂度 $O(n)$。// 手摇算法交换 arr[a..b] 和 arr[b+1..c]- **空间复杂度**:$O(1)$(原地操作)。
2025-04-11 14:09:23
144
原创 _mm_malloc解析
mm_malloc 是用于内存分配的函数,专为SIMD指令集(如SSE、AVX等)设计,确保分配的内存满足特定字节对齐要求。通过合理使用_mm_malloc,可以显著提升SIMD代码的稳定性和性能,尤其在处理图像数据、科学计算等需要批量操作的场景中效果显著。
2025-04-03 09:45:48
346
原创 四个元素最大值的simd优化
3 数据类型:本示例适用于32位整数,浮点数需改用_mm_max_ps。2 减少指令数:从4次比较减少到2次向量操作。2)第一次移位后:[2, 6, 3, 1]4)第二次移位后:[3,3, 6, 6]5) 比较结果:[6, 6, 6, 6]1)初始向量:[6, 2, 1, 3]3)比较结果:[6, 6, 3, 3]
2025-04-03 09:31:50
405
原创 #pragma omp single 解析
pragma omp single 是 OpenMP(一种用于共享内存并行编程的 API)中的一种工作共享指令,用于在并行区域内指定一个代码块仅由单个线程执行,其他线程会等待该代码块执行完毕后再继续(除非显式取消同步)。1)单线程执行:在并行区域(#pragma omp parallel)内部,标记的代码块会被任意一个可用线程执行(不固定是主线程)。2)#pragma omp single:由任意一个线程执行,且默认有隐式同步。3)独立性:single 块内的变量默认是共享的(除非显式声明为私有变量)。
2025-04-02 09:37:36
533
原创 使用OpenMP并行化优化归并排序算法
4. 最终合并:将 [4,6,7] 和 [5,9] 合并为 [4,5,6,7,9]。2)左子数组继续分解为 [6,4] 和 [7]→ 合并为 [4,6,7];4) 最终合并 [4,6,7] 和 [5,9]→ [4,5,6,7,9]。2)左子任务 [0,1](长度2)触发串行处理 → 合并为 [4,6]。-分割为左 [0,2](6,4,7)和右 [3,4]($9,5$)。1)长度 3 > 2,继续并行分解为 [0,1] 和 [2,2]。3) 右子任务 [2,2] 直接返回 → 合并为 [4,6,7]。
2025-04-02 09:31:00
929
原创 _mm_storeu_si128解析
这是Intel SSE2指令集提供的内在函数(intrinsic),用于将128位SIMD寄存器(__m128i类型)中的数据非对齐存储到内存地址。函数原型:void _mm_storeu_si128(__m128i∗ mem_addr, __m128i a)对齐存储 _mm_store_si128 更快。非对齐存储 _mm_storeu_si128 稍慢。1)不对齐存储:允许存储到任意内存地址(无需16字节对齐)2)网络协议解析(非对齐数据包处理);
2025-04-01 10:48:40
240
原创 块交换递归算法
block_swap_rotate(arr, start, end, d) 处理数组的 [start, end]区间,旋转前 d个元素到末尾。对数组 [1,2,3,4,5,7,8]旋转3位后结果为 [4,5,7,8,1,2,3]。以{1, 2, 3, 4, 5, 6,7, 8}将前3个元素移到末尾为例。1. 将数组分为前`d`个元素(块A)和剩余元素(块B);// 交换右块和左块前right_len个元素。// 交换左块和右块前left_len个元素。d = d % n;1) 交换A和B的前d个元素;
2025-04-01 10:31:20
571
原创 三次反转法(手摇算法)
1 左移k位:修改为reverse(0, k-1) → reverse(k, n-1) → reverse(0, n-1)reverse(arr, k, n-1);2 负数处理:若k<0,转换为等效的正数位移(如左移2位等价于右移3位)。2. 前2个反转 → [4,5,3,2,1]3. 后3个反转 → [4,5,1,2,3]1. 整体反转 → [5,4,3,2,1]2 前k个元素反转:反转前k个元素。
2025-03-31 12:24:05
318
原创 两个有序序列的合并-手摇算法
以数组 [1,4,7,9,2,5,6,8]为例,合并左块 [1,4,7,9]和右块 [2,5,6,8]。7 > 5,找到右块中连续比 7 小的元素(5,6)。左块:[1,4,7,9] 右块:[2,5,6,8]数组变为:[1,2,4,7,9,5,6,8]数组变为:[1,2,4,5,6,7,9,8]数组变为:[1,2,4,5,6,7,8,9]数组:[1,4,7,9,2,5,6,8]
2025-03-31 11:29:43
554
原创 std::countr_zero
std::countr_zero 是 C++20 标准引入的位操作函数,用于计算无符号整数的二进制表示中末尾零(Trailing Zeros)的数量。旧代码可继续使用 __builtin_ctz,但需自行处理 x=0 的情况。通过 std::countr_zero,C++ 提供了一种高效且安全的位操作工具,适用于从底层系统编程到算法优化的广泛场景。若 x = 0,返回 T 的位数(例如 32 对应 uint32_t)。输入为 0 时,返回类型的位数(如 8 位类型返回 8),无未定义行为。
2025-03-29 20:29:17
549
原创 归并排序算法的非递归实现
代码的关键点在于正确控制子数组的大小和合并的边界条件,确保所有元素最终被合并排序。通过临时数组合并两个有序区间$[left, mid]和[mid+1, right]。1) 合并[5,6,7,8]和[2]$→ $[2,5,6,7,8]$1) 合并[5,6]和[7,8]→ [5,6,7,8]二 算法步骤(以数组[6,5,7,8,2]$为例)1) 合并[6]和[5] → [5,6]2) 合并[7]和[8] → [7,8]3) 数组变为:[5,6,7,8,2]2) 数组变为:[5,6,7,8,2]
2025-03-29 20:15:13
498
原创 _mm_blend_ps解析
mm_blend_ps 通过立即数掩码高效混合向量元素,适用于需静态确定数据源的 SIMD 优化场景。则结果向量为 { a[0], a[1], b[2], b[3] } → {1.0, 2.0, 13.0, 14.0}1)_mm_shuffle_ps 通过掩码重排元素,功能更复杂(支持跨通道复制),但需要更多时钟周期。2)_mm_blendv_ps 使用向量掩码(非立即数),掩码可动态计算,灵活性高但效率略低。3)_mm_blend_ps 立即数掩码,编译时确定,效率更高。
2025-03-28 10:44:23
470
原创 两个有序序列合并-双指针法
每次比较 arr1[i]和 arr2[j],将较小值放入结果数组。选择更小的 0,结果变为 [0],指针 j后移。选择 1,结果变为 [0,1],指针 i 后移。选择 2,结果变为 [0,1,2],指针 i后移。2 比较 arr1[0]=1和 arr2[1]=4。arr1: [1, 2, 3, 6, 9] 指针i=0。arr2: [0, 4, 5, 7, 8] 指针j=0。1 比较 arr1[0]=1和 arr2[0]=0。3 比较 arr1[1]=2和 arr2[1]=4。
2025-03-28 10:31:16
552
原创 _mm_blendv_ps解析
mm_blendv_ps 是 Intel SSE4.1 指令集 中的一条 SIMD 指令,用于对两个单精度浮点数向量(128 位)进行条件混合操作。其核心功能是:根据掩码(mask)向量的值,从两个输入向量中选择对应的元素组合成新向量。掩码通常通过比较指令生成(如 _mm_cmplt_ps、_mm_cmpgt_ps),或手动构造(如 _mm_set1_ps(-0.0f))。避免频繁生成掩码,尽量复用。
2025-03-27 11:46:43
372
原创 合并两个有序序列—逆向双指针
逆向双指针是一种常用于处理两个有序序列的高效算法技巧,其核心思想是从序列的末尾开始遍历,避免覆盖有效数据或多次移动元素。1)合并两个有序数组(如 nums1 和 nums2,其中 nums1 尾部有预留空间)。// 处理nums2剩余元素(无需处理nums1剩余,因为它们已在正确位置)1)比较 nums1[i] 和 nums2[j],将较大值放入 nums1[k]。3)处理剩余元素:若 nums2 有剩余元素,直接复制到 nums1 头部。i 指向第一个序列有效元素末尾(如 nums1 的最后一个元素)
2025-03-27 11:39:58
1298
原创 _mm_cmpgt_epi8 和_mm_cmpgt_epi32 详解
mm_cmpgt_epi8适用于细粒度(字节级别)的有符号整数比较_mm_cmpgt_epi32,适用于大范围(32 位整数)的有符号数值比较。若 a = [100, -200, 300, 400],b = [50, -100, 300, 0],则结果为 [0xFFFFFFFF, 0x00000000, 0x00000000, 0xFFFFFFFF]。若 a = [10, -5, 3, ...],b = [5, -3, 3, ...],则结果为 [0xFF, 0x00, 0x00, ...]。
2025-03-26 09:48:37
292
原创 数组子序列冒泡比较的SIMD优化
使用_mm_loadu_si128加载每块中连续的4个整数(128位寄存器),通过_mm_cmpgt_epi32比较对应元素大小,生成掩码。用_mm_blendv_epi8根据掩码混合两个块的数据:将较大值保留在块i+1,较小值留在块i,最后将结果写回内存。若数组按16字节对齐,改用_mm_load_si128和_mm_store_si128提升加载/存储效率。依次遍历每对相邻块(块i与块i+1),若块i+1中某位置元素大于块i的对应位置元素,则交换二者。// 处理剩余不足4个的元素。
2025-03-26 09:38:59
1100
原创 _mm_blendv_epi8解析
mm_blendv_epi8是 Intel SIMD 指令集(SSE4.1 引入)中的一个函数,用于按字节(8 位)条件混合两个 128 位向量的内容。通过 _mm_blendv_epi8,开发者可以高效实现基于条件的逐字节数据选择,避免分支预测开销,提升 SIMD 代码性能。根据掩码(mask)向量的每个字节的最高位,选择两个输入向量(a和 b)对应字节的值。mask:控制混合的掩码向量(128 位,每个字节的最高位决定选择 a 或 b)。如果掩码字节的最高位为 0,则选择第一个向量 a的对应字节。
2025-03-25 16:27:48
352
原创 数组子序列比较的SIMD优化
给定数组 [6, 5, 7, 8, 2, 9],子序列间隔为3,可将其平均分为前3个和后3个元素。仅更新有效元素(前3个和后3个),忽略填充值。将前3个和后3个元素加载到两个128位向量(__m128i),填充第四个元素为0。分割数组:前半为 [6, 5, 7],后半为 [8, 2, 9]。2) 掩码混合:利用 _mm_blendv_epi8 快速选择保留的值。3) 通过SSE优化,将逐元素比较与交换转化为向量操作,提升了计算效率。结果:[6, 2, 7, 8, 5, 9]。// 根据掩码混合向量。
2025-03-25 15:55:57
861
原创 归并排序算法
4)最终合并 [5 6 7] 和 [2 8]→ [2 5 6 7 8]。3) 合并右半部分 [8] 和[2]→ 合并为 [2 8]。2)合并:将相邻有序子数组合并为一个有序数组,直到全部合并。2) 合并 [5 6] 和 [7] → [5 6 7]。[6 5 7] 和[8 2]。1)合并 [6]和 [5] → [5 6]。二、分步演示(数组[6 5 7 8 2])2)第2层分解左半部分 [6 5 7]3)第2层分解右半部分 [8 2]
2025-03-22 19:57:56
343
原创 Ciura序列
2) 后续增量可通过最后一个元素乘以2.25生成(如:701*2.25=1577,1577*2.25=3548...)。1)经验证最优的初始序列为:[1, 4, 10, 23, 57, 132, 301, 701]3)时间复杂度约为O(n^{3/2}),优于传统希尔排序的O(n^2)。3)性能优化:Ciura序列在中等规模数据(n ≤ 10^6)表现最佳。1)逆序使用序列:必须从最大间隔开始递减。
2025-03-22 19:24:39
221
原创 使用OpenMP实现希尔排序并行化
omp_set_num_threads(物理核心数/2);// 小数据使用单线程。1)分层并行:不同gap阶段顺序执行,同一gap内的子数组分组并行处理。2)数据独立性:同一gap下不同子数组间无重叠元素,天然支持并行。omp_set_num_threads(物理核心数);1)必要性:不同子数组的排序耗时差异大(元素数量不同)。3)负载均衡:动态调度解决不同子数组计算量不均的问题。// 并行区域:每个线程处理不同子数组。// 生成Ciura序列(含动态扩展)
2025-03-21 10:40:33
784
原创 希尔排序中的Hibbard序列
递推公式:每次k增加1,计算 h_{k+1}=2^{k+1}-1。while ((1 << k) - 1 < n) { // 1<<k等价于2^k。作为希尔排序的步长(间隔序列),用于将数据分为多个子序列进行插入排序。其中k从1开始递增,序列为:1, 3, 7, 15, 31, 63, …1)最坏情况:O(n^{3/2}),优于原始希尔排序的O(n^2)。起始条件:k=1,对应h_1=2^1-1=1。// 找到最大的k使得2^k -1 < n。
2025-03-21 10:02:11
430
原创 希尔排序为啥能降低时间复杂度?
最终,希尔排序在大多数实际场景中显著优于插入排序,时间复杂度可降至 O(n log n) 至 O(n^{4/3}) 之间,具体取决于间隔序列的设计。例如,Hibbard间隔保证每次排序后,元素的移动步长呈指数级缩小,有效降低总操作次数。希尔排序通过分阶段的子序列插入排序,逐步减少元素与目标位置的偏差,从而降低整体比较和移动次数。希尔排序通过引入间隔(gap)将数组分成多个子序列,逐步缩小间隔直至为1。例如,若元素需从位置51移动到位置1,在间隔为50时,一步即可到位。最坏 O(n^{3/2})。
2025-03-20 09:32:33
286
LFW数据集主要测试人脸识别的准确率
2020-02-26
cfp-dataset.zip
2020-02-26
lfw(dataset+pairs).zip
2020-02-26
AgeDB_n.zip
2020-02-26
Google Save All Resources 插件
2020-10-08
freeglut-3.0.0 - 副本.zip
2020-08-29
cfppairsff.txt
2020-02-26
cfppairsfp.txt
2020-02-26
WebFace260M.pdf
2021-10-12
Qt4.8.4和Echarts5.3.3绘制图表例子
2022-09-17
echarts-5.3.3
2022-09-17
Least-squares estimation of transformation parameters between tw
2022-06-23
sqlite3.38.0
2022-03-12
C++序列化和反序列化
2022-03-10
windows Xshell6Portable_50151.zip
2021-12-04
用于服务器和客户端之间传输文件的Xftp6.rar
2021-12-04
Memory Reordering Caught in the Act
2021-10-19
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人