自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

kupePoem的专栏

think like a poem

  • 博客(637)
  • 资源 (36)
  • 收藏
  • 关注

原创 纯数组嵌套的JSON数据使用QJsonArray进行嵌套查找

qDebug() << "矩阵[1][2] =" << element.toInt();qDebug() << "值:" << value.toInt();qDebug() << "值:" << value.toString();// 无效的索引格式。qDebug() << "Z坐标:" << zCoord.toInt();// 查找 [0][1][0]qDebug() << "找到的值:" << result.toInt();qDebug() << "叶节点:" << leaf.toString();

2026-01-09 11:27:54 259

原创 QJsonObject能否嵌套查找?

QJsonObject 支持嵌套查找,但需要逐层访问,因为 Qt 的 JSON API 是强类型的,没有内置的路径查询语法(如 JavaScript 的 obj.a.b.c)。4 对于复杂的 JSON 操作,可以考虑使用第三方库(如 JsonCpp、nlohmann/json)或 Qt 6 中增强的 JSON 支持。qDebug() << "找到值:" << value.toString();

2026-01-09 11:03:04 821

原创 JSON中的数组元素能否不同?

"John", 30, true], // 第一行:[姓名, 年龄, 是否活跃]"success", // 字符串:状态。{"page": 1, "size": 10} // 对象:分页信息。{"type": "string", "value": "用户名"},[], // 空数组:无附加信息。"title", // 字符串:组件标识。{"color": "blue"} // 对象:样式配置。

2026-01-09 10:31:26 266

原创 malloc 和 realloc 的区别

malloc 创建新内存块,realloc 修改现有内存块大小,可能涉及数据复制和内存移动。// 如果失败,ptr变为NULL,内存泄漏!printf("原地址: %p\n", (void*)p1);printf("新地址: %p\n", (void*)p2);// 不应依赖此行为,应使用 free(original_ptr)参数 1个(大小) 2个(原指针,新大小)调整已分配内存大小 可能移动内存,原指针失效。(3) 返回:指向新内存块的指针(可能与原指针不同)。

2026-01-08 10:13:48 250

原创 getc 和 fread区别

printf("只读取了 %zu 个元素\n", items);(1) getc():每次调用都有函数开销,适合小文件或需要逐字符处理的场景。(2) fread():一次系统调用读取大量数据,减少I/O次数,适合大文件。(2) fread() 是块级的读取,适合高性能数据处理。printf("到达文件末尾\n");(1) getc() 是字符级的读取,简单但效率较低。printf("读取错误\n");printf("读取错误\n");(2) 返回读取的字符(转换为 int 类型)。

2026-01-07 16:05:37 441

原创 std::thread::join() 和 std::future::get()的调用顺序分析

std::thread::join() 和 std::future::get() 都是阻塞调用,但它们在调用顺序和线程管理上有重要区别。4 使用 std::async:只需 get(),不需要显式 join()。// 注意:使用 std::async 时,不需要显式 join。std::thread t([](){ /* 任务 */ });

2025-12-25 11:22:00 578

原创 std::thread的使用

/ 应该是 20000。#include <functional> // 需要 std::ref。// 使用 std::ref 传递引用。

2025-12-25 10:08:33 1067

原创 Qt中setSpacing与setContentsMargins的区别

layout1->addWidget(new QPushButton("按钮A"));layout1->addWidget(new QPushButton("按钮B"));window1.setWindowTitle("只有间距(spacing=30)");layout2->addWidget(new QPushButton("按钮A"));layout2->addWidget(new QPushButton("按钮B"));

2025-12-12 10:26:20 519

原创 Qt中setSpacing函数介绍

setSpacing() 是 Qt 布局管理中的一个重要函数,用于设置布局中部件之间的间距。// 按钮之间垂直间距20px。// 水平方向间距20像素。// setContentsMargins: 布局与外部的边距。// setSpacing: 部件之间的内部间距。

2025-12-12 10:14:37 490

原创 计算机算法导论第三版视频讲解

算法导论》第三版是一本深度与广度兼备的经典算法教材,它不仅适合作为大学教材,也是技术专业人士的宝贵参考书。这本书的价值不仅在于教授具体的算法,更在于培养读者算法思维和分析能力,这是计算机科学教育的核心目标之一。书名:Introduction to Algorithms(中文译名:算法导论)2 在线课程:Coursera、edX等平台有基于本书的算法课程。使用渐进符号(大O、大Θ、大Ω)进行复杂度分析。2 准备面试:重点学习排序、数据结构、图算法等核心章节。出版社:MIT Press(麻省理工学院出版社)

2025-12-11 13:26:02 897

原创 计算机算法导论第三版算法视频讲解

算法导论》第三版是一本深度与广度兼备的经典算法教材,它不仅适合作为大学教材,也是技术专业人士的宝贵参考书。点击链接,打开【快手】直接观看!这本书的价值不仅在于教授具体的算法,更在于培养读者算法思维和分析能力,这是计算机科学教育的核心目标之一。书名:Introduction to Algorithms(中文译名:算法导论)2 在线课程:Coursera、edX等平台有基于本书的算法课程。计算机算法导论第三版的免费视频,会陆续不断更新算法视频。2 准备面试:重点学习排序、数据结构、图算法等核心章节。

2025-12-11 12:10:09 803

原创 Qt中addSpacing参数为0的作用

在实际开发中,如果确定不需要间距,通常直接不调用 addSpacing() 会更简洁。但在需要动态调整或条件控制间距的场景下,addSpacing(0) 是一个有用的设计模式。addSpacing() 是 Qt 布局类(如 QVBoxLayout、QHBoxLayout)中的一个方法,用于在布局中插入固定大小的间距。if (QLayoutItem *item = layout->itemAt(1)) { // 获取间距项。// 设置整个布局的间距。// 即使 spacing=0,它仍然是一个布局项。

2025-12-11 11:56:42 352

原创 QFrame::VLine 介绍

buttonLayout->addWidget(new QPushButton("另存为"));buttonLayout->addWidget(new QPushButton("保存"));buttonLayout->addWidget(new QPushButton("打印"));statusLayout->addWidget(new QPushButton("设置"));buttonLayout->addWidget(new QLabel("状态:"));// 设置合适的高度。

2025-12-10 11:51:38 339

原创 Qt中addStretch函数介绍

addStretch 是 Qt 框架中布局管理器(如 QHBoxLayout、QVBoxLayout)的一个函数,用于在布局中添加弹性空间。addStretch() 函数会在布局中插入一个可伸缩的空间(或称为弹簧),用于控制布局中各组件的间距和对齐方式。(2) insertStretch(int index, int stretch = 0):在指定位置插入弹性空间。(1) addSpacing(int size):添加固定大小的空间。(4)在复杂的布局中,合理使用弹性空间可以创建响应式的界面布局。

2025-12-10 11:39:05 497

原创 位图有哪些算法?

实际应用中应根据数据特征(规模、密度、分布)和需求(查询类型、性能要求、内存限制)选择合适的算法组合。位图(Bitmap),又称位数组(Bit Array)或位集合(Bitset),是一种使用比特位(bit)作为存储单元的数据结构,用于高效表示大规模整数集合。(1) 硬件感知优化:针对特定CPU架构(如ARM NEON,Intel AVX-512)优化。核心思想:利用位图存储单元(如64位字)的特性,跳过全为0的块。(2) 混合数据结构:结合位图与其他数据结构(如B+树,跳表)。

2025-12-09 11:36:33 974

原创 线段树有哪些算法?

线段树是一种二叉树数据结构,用于高效处理区间查询和区间更新问题。它将一个线性区间递归地划分为若干子区间,每个树节点存储相应区间的聚合信息。线段树的核心优势在于其灵活性和效率的平衡,通过不同的节点设计和标记策略,可以适应各种区间处理需求。如果当前区间完全包含在查询区间内,直接返回节点值。标记表示"该区间需要更新但尚未传递到子节点"。遇到有懒标记的节点,先下推标记再查询。(2)更新节点值:原值 + 增加值 × 区间长度。如果与右子区间有重叠,查询右子树。(3) 下推策略:根据标记类型按顺序更新子节点。

2025-12-01 11:39:57 593

原创 vs2015编译总是卡死

(3)链接:最后,链接器(如 link.exe)将所有的代码目标文件(.obj)和由资源转换而来的这个资源目标文件(.obj)链接在一起,打包成最终的可执行文件(.exe)或动态链接库(.dll)。将c:/windows/Microsoft.NET/Framework/v4.0.30319下的43kB的cvtres.exe,替换..vc/bin/下的48kB的cvtres.exe。它的核心作用非常专一:将编译后的资源文件(.res)转换为链接器能够识别的COFF格式的目标文件(.obj)。

2025-12-01 11:22:08 419

原创 vs2015下cl.exe的种类与区别

VS2015 x86-x64 Cross Tools Command Prompt: x86到x64交叉编译。[VS安装路径]\VC\bin\x86_amd64\cl.exe。[VS安装路径]\VC\bin\amd64_x86\cl.exe。[VS安装路径]\VC\bin\amd64_arm\cl.exe。[VS安装路径]\VC\bin\x86_arm\cl.exe。[VS安装路径]\VC\bin\amd64\cl.exe。(2)x64 上编译 x86 (amd64_x86)

2025-11-28 16:33:16 298

原创 B+树有哪些算法?

B+树通过其独特的设计(数据仅存于叶子、叶子节点链表、非叶子纯索引)在数据库系统中展现出巨大优势。从根节点开始,利用节点内键的有序性进行二分查找,逐层向下导航,最终在叶子节点中找到目标键或确认其不存在。找到正确的叶子节点插入数据,如果节点溢出则分裂,并将中间键提升到父节点,可能递归向上分裂。预先排序所有数据,自底向上构建B+树,生成填充率高的完美平衡树,效率远高于单条插入。从叶子节点删除数据,如果节点下溢则尝试向兄弟借键或合并节点,可能递归向上调整。B树所有节点都可能存储数据。B+树只有叶子节点存储数据。

2025-11-28 16:11:07 611

原创 cmake 错误: The C CXX compiler identification is unknown

安装cmake后,用cmake配置vs2015 64 位项目,配置时报出The C CXX compiler identification is unknown 的错误。环境:CMake3.16.0-rc4,vs2015,windows7。重新启动系统后,重新配置就可以了。

2025-11-27 11:49:41 291

原创 程序数据管理器不匹配vs2015

将../vc/bin/x86_amd64/目录下270kB大小的mspdb140.dll换成../vc/bin/amd64/目录下286kB的mspdb140.dll。用cmake生成64位项目后,用vs2015打开,如果重新生成会报出“程序数据管理器不匹配”c1902的错误。

2025-11-27 11:41:25 345

原创 B树有哪些算法?

这些算法构成了B树理论体系的核心,从基础操作到高级优化,体现了B树作为高效外部存储数据结构的强大能力。搜索 O(logₘn) O(1) O(logₘn)插入 O(logₘn) O(1) O(logₘn)删除 O(logₘn) O(1) O(logₘn)批量加载 O(n logₘn) O(n) O(n/B)(2)除根节点外,每个节点至少包含⌈m/2⌉-1个关键字。(2)插入关键字:将新关键字插入叶子节点的适当位置。

2025-11-26 10:36:55 1014

原创 千帆AppBuilder介绍

基础与高级组件:平台内置超过60种工具组件,包括大模型组件、AI能力组件(如OCR、TTS)以及百度特色组件(如百度搜索、地图)。此外,高级组件模块汇集了RAG(检索增强生成)、GBI(生成式BI)、代码解释器等尖端技术框架。工作流编排:这是AppBuilder的一项核心功能,允许开发者通过可视化的画布,以拖拉拽的方式,将大模型、知识库、代码块等组件按业务逻辑连接起来,构建稳定、复杂的应用流程。低代码模式:通过工作流编排,以拖拉拽方式设计复杂的业务流程,适合需要高可控性和复杂逻辑的场景。

2025-11-26 10:11:20 536

原创 跳表有哪些算法?

从最高层索引开始,在当前层向右查找,遇到大于目标值的节点就下降一层,逐步逼近目标位置。使用概率控制节点层数,保证上层节点数量约为下层的一半,维持跳表的平衡性。先查找到插入位置,随机生成新节点的层数,然后在各层插入节点并更新指针。先查找到要删除的节点及其在各层的前驱节点,然后逐层更新指针连接,最后释放节点。(3)创建新节点,如果新节点层数超过当前最大层,更新跳表的最大层数。如果下一个节点值 = 目标值:查找成功,返回节点。本节点到下一层同节点之间的节点数量(跨度)。将前驱节点的指针指向目标节点的后继节点。

2025-11-25 14:33:44 809

原创 coze介绍

它的核心理念是让每个人,无论是否有编程背景,都能通过直观的方式,快速构建和部署具备强大能力的AI智能体(Agent)。核心思想:为Bot定义一个角色、性格和对话风格(例如,“你是一个专业的营养师”或“你是一个风趣的旅游向导”)。它类似于编程中的函数,有明确的输入、处理过程和输出。创建的AI机器人(称为Bot)可以轻松发布到多种渠道,如飞书、微信公众号、钉钉等,实现“一次开发,多处部署”。拥有一个官方和社区共同维护的插件库、工作流和Bot商店,开发者可以复用他人的成果,加速自己的开发过程。

2025-11-25 11:38:20 945

原创 布隆过滤器有哪些算法?

这些算法构成了布隆过滤器技术的完整体系,从基础到高级,满足了不同场景下的需求。布隆过滤器(Bloom Filter)是一种概率型数据结构,用于高效地检查一个元素是否存在于一个集合中。a 对元素x计算k个哈希值:h₁(x), h₂(x), ..., hₖ(x)。如果有0,返回"肯定不存在"。(2)概率性结果:可能返回假阳性(误判),但不会返回假阴性。b 如果所有位置计数器都大于0,返回"可能存在"b 如果粗略层返回"肯定不存在",直接返回结果。a 创建长度为m的计数器数组,初始化为0。

2025-11-22 15:16:46 544

原创 AnythingLLM介绍

它的核心思想是让个人、团队或企业能够轻松地将自己的文档(如 PDF、Word、Excel、PPT、TXT,甚至网页和视频字幕)交给一个或多个大语言模型,构建一个完全私有的、基于自身知识库的智能聊天机器人或文档分析助手。这对于处理敏感数据的企业(如法律、金融、医疗)至关重要。研究人员、学生或写作者可以将自己收集的大量论文、书籍、笔记导入,构建一个专属的“第二大脑”,通过对话的形式快速回忆和梳理知识。企业可以基于自己的帮助文档和产品信息,构建一个 24/7 在线的智能客服机器人,提供准确、一致的客户支持。

2025-11-22 14:53:06 701

原创 并查集有哪些算法?

并查集(Disjoint-Set Union, DSU)是一种用于管理元素分组情况的数据结构,主要用于处理不相交集合的合并与查询问题。(3)合并操作:需要遍历整个数组更新所有相关元素 - O(n)时间复杂度。(2)查找操作:直接访问数组获取集合ID - O(1)时间复杂度。(3)合并操作:将一个集合的根节点指向另一个集合的根节点。(2)合并(Union):将两个集合合并为一个集合。(1)在快速合并基础上记录树的"秩"(高度或大小)。(1)查找(Find):确定某个元素属于哪个集合。

2025-11-21 10:42:08 452

转载 在vscode中集成本地开源AI大模型

启动服务:ollama serve(后台运行),检查 curl http://localhost:11434(返回 “Ollama is running”)。可供选择多种模型,根据自己电脑配置去选择对应的模型(本次使用qwen3-8b,该模型后台占运存大约6G,大参数模型都是在15-20G)执行ollama run qwen3:8b进行测试,输入hello,看是否有回应,然后让它生成一段简单代码试试。ollama:官网下载https://ollama.com/验证:运行 ollama --version。

2025-11-21 10:17:48 376

原创 Ollama介绍

它就像是您个人电脑上的"AI 模型管理器",让您不需要深厚的技术背景就能使用先进的 AI 技术。它消除了使用 AI 的技术门槛和隐私担忧,让每个人都能在完全控制自己数据的前提下,享受到人工智能带来的便利和可能性。(1)角色定制:可以为 AI 设定特定身份,比如"编程专家"、"写作助手"或"翻译专家"。(1)本地运行:所有 AI 对话和数据处理都在您的电脑上完成,不会上传到任何服务器。(3)专属助手:可以创建完全符合您个人需求的定制化 AI 助手。(3)专属配置:保存您喜欢的设置,创建个性化的 AI 体验。

2025-11-21 09:24:19 459

原创 vscode中continue插件介绍

它的核心价值在于,它将多种强大的 AI 编程能力无缝集成到你的开发环境中,但它本身不提供模型,而是作为一个连接各种 AI 模型的桥梁。当遇到不理解或出错的代码时,你可以选中代码片段,并使用快捷键 Ctrl+L (Windows/Linux) 或 Cmd+L (Mac) 将其添加到聊天上下文,然后让 AI 解释其功能或帮助修复错误。除了基础的代码补全,你可以在聊天框中直接用自然语言描述需求,例如“写一个Python函数计算斐波那契数列”或“用React写一个按钮组件”,AI 会根据上下文生成相应代码。

2025-11-21 09:23:51 887

原创 Trie有哪些算法?

算法描述:从Trie根节点出发,对于要插入字符串的每个字符,检查当前节点是否存在对应字符的子节点,不存在则创建新节点,然后移动到子节点继续处理下一个字符,直到处理完整个字符串后在最后一个节点标记为单词结束。算法描述:首先定位到前缀字符串的终点节点,然后从该节点开始进行深度优先遍历,每当遇到标记为单词结束的节点时,记录从根节点到该节点的完整路径字符串。算法描述:先找到要删除单词的终点节点,取消其单词结束标记,然后从叶子节点向根节点回溯,删除那些没有子节点且不是其他单词组成部分的节点。

2025-11-20 11:31:15 505

原创 开源代码大模型StarCoder2介绍

(1)Grouped Query Attention:改进的注意力机制,提升推理效率。(3)BigCode Benchmark:在代码理解和生成任务中表现卓越。(2)更长上下文:16K token 上下文窗口,是前代的两倍。(2)专业领域:特别优化了对数据科学、Web开发等领域的支持。(1)灵活的模型选择:3B/7B/15B满足不同资源需求。(3) 代码理解:在代码搜索和补全任务中准确率更高。(1)性能大幅提升:在各项基准测试中全面超越前代。(2)多尺度选择:提供3B到15B不同规模的模型。

2025-11-20 11:01:27 464

原创 开源代码大模型DeepSeek Coder介绍

例如,你可以描述"用Spring Boot实现一个带JWT验证的用户登录接口",模型便能生成包含控制器、JWT工具类和异常处理的完整代码。具备分析现有代码的能力,可以识别代码坏味(如重复代码、复杂条件判断),并给出重构建议。明确角色(如"资深Python后端开发")、任务(具体功能)和约束条件(如性能、规范要求),这能显著提升生成代码的质量。在集成开发环境(IDE)中使用时,它能借鉴项目中的其他文件结构和代码规范,生成风格一致的代码。开源开放(允许商业使用),性能超越部分闭源模型,支持项目级上下文理解。

2025-11-20 10:44:13 366

原创 代码生成工具Replit AI

代码解释与调试:遇到难以理解或没有注释的代码时,可以让 Ghostwriter 为你解释。深度上下文理解:得益于强大的上下文处理能力,Replit Agent 能够理解整个项目的架构、你之前的决策以及编码风格,如同一位合作了数月之久的团队成员。智能生成与补全:它不止是补全简单的代码片段,可以根据你的注释描述生成复杂的代码块,甚至能根据项目已有的代码结构和模式,给出精准的代码建议。代码转换与优化:它可以帮助你将代码从一种结构转换到另一种(例如,将迭代转换为递归),或者为代码提供优化建议,提升代码质量。

2025-11-19 14:25:16 470

原创 代码生成工具Cursor介绍

工作方式:将光标放在想插入代码的位置,或者选中一段想要修改的代码,然后按下 Ctrl+K,在弹出的输入栏中给出指令(例如“将这段循环改为使用 map 方法”或“生成一个验证邮箱的函数”),AI 就会在指定位置进行操作。Cursor 的 AI 能自动识别你项目中的文件、代码结构和错误信息,因此它的回答和修改建议是基于对整个项目的理解,而非孤立的代码片段。3 审查生成代码:尽管Cursor非常强大,但仍需将AI视为一个才华横溢的助手,亲自审查和测试生成的所有代码是确保质量和安全的关键步骤。

2025-11-19 14:11:36 447

原创 图有哪些算法?

每次从集合外选取当前距离起点最近的节点加入集合,然后更新其所有邻居节点的距离估计(即,如果通过当前节点到达邻居的距离更短,则更新)。(2) Prim算法:从一个任意节点开始,不断在当前的生成树和树外节点之间,选择权重最小的边,并将该边和对应的节点加入生成树。从队列中取出一个节点,将其输出,并将该节点的所有邻居的入度减1。如果某个邻居的入度减为0,则将其加入队列。(3)经过多层这样的操作,每个节点的最终表示就包含了其自身特征以及其多跳邻居的拓扑信息和特征信息,可以用于节点分类、链接预测、图分类等任务。

2025-11-19 11:25:29 1212

原创 堆有哪些算法?

如果是,则弹出它并更新哈希表(减少删除计数),直到堆顶是一个有效的、未被删除的元素。(1) 建堆阶段:将待排序的无序数组视为一个完全二叉树,从最后一个非叶子节点开始,向前依次对每个节点执行“下沉”操作,从而将整个数组调整成一个标准的堆结构。删除堆顶(Heapify Down):将堆顶元素与末尾元素交换,删除末尾(原堆顶),然后新的堆顶元素向下与子节点比较并交换,直到满足堆性质。核心思想:利用最大堆(升序)或最小堆(降序)的特性,通过反复取出堆顶元素(当前极值)并调整堆结构,来完成排序。

2025-11-18 15:01:34 889

原创 代码生成工具文心快码介绍

总而言之,文心快码是一款功能全面、尤其在中文语境和百度技术生态中表现出色的AI编程助手,它致力于成为开发者的“结对编程”伙伴,全面提升软件开发的生命周期效率。功能:文心快码能够感知您当前打开的项目、文件以及选中的代码,使得问答和请求具有极强的针对性。功能:对百度的技术生态(如飞桨PaddlePaddle、百度云产品等)有更深度的理解和更好的支持,生成的相关代码更为精准。功能:选中一段复杂的、难以理解的代码(无论是自己写的还是他人的),文心快码可以逐行或整体地为其生成清晰易懂的中文解释。

2025-11-18 09:05:40 515

原创 代码生成工具秒哒介绍

一键生成包含前端、后端和数据库的完整应用 生成的应用不再是演示界面,而是真正可运行、可交互的完整产品。在上手前,可以先在脑海里构思好应用的核心功能和样式,用清晰、具体的语言描述出来,这样生成的效果会更贴合您的预期。像“万能插座”一样轻松集成各种功能 可以调用百度智能云及第三方的工具和服务,如数据检索、图像处理、地图定位、语音识别等,为你的应用赋能。秒哒是百度推出的一个无代码应用开发平台,其最大的特点就是让你无需编写任何代码,只需通过自然语言对话,就能快速创建出功能完整的应用。

2025-11-18 09:05:21 911

opengl es1.1 NDK 旋转的立方体

opengl es1.1作的旋转立方体的demo。环境eclipse+ndk+android。大家可以学习一下。

2014-11-11

Hyperion Tools

进行Hyperion数据的预处理,生成envi标准文件,去条带等。

2013-08-01

LFW数据集主要测试人脸识别的准确率

LFW数据集主要测试人脸识别的准确率,该数据库从中随机选择了6000对人脸组成了人脸辨识图片对,其中3000对属于同一个人2张人脸照片,3000对属于不同的人每人1张人脸照片。测试过程LFW给出一对照片,询问测试中的系统两张照片是不是同一个人,系统给出“是”或“否”的答案。通过6000对人脸测试结果的系统答案与真实答案的比值可以得到人脸识别准确率。 这个集合被广泛应用于评价 face verification算法的性能。

2020-02-26

cfp-dataset.zip

CFP:500个身份,每个身份有10个正脸,4个侧脸。评估方案:frontal-frontal (FF) and frontal-profile (FP) 人脸验证,有十个文件夹,每个文件夹有350个相同人和350个不同人。本文用CFP-FP进行挑战。这个是验证集数据。

2020-02-26

lfw(dataset+pairs).zip

LFW数据集主要测试人脸识别的准确率,该数据库从中随机选择了6000对人脸组成了人脸辨识图片对,其中3000对属于同一个人2张人脸照片,3000对属于不同的人每人1张人脸照片。测试过程LFW给出一对照片,询问测试中的系统两张照片是不是同一个人,系统给出“是”或“否”的答案。通过6000对人脸测试结果的系统答案与真实答案的比值可以得到人脸识别准确率。 这个集合被广泛应用于评价 face verification算法的性能。

2020-02-26

AgeDB_n.zip

agedb数据,用于深度学习测试数据,16488张图片,标签有年龄,性别等消息。 AgeDB包含16,488个各种名人的图像,如演员,作家,科学家,政治家,每个图像都注明了身份,年龄和性别属性。 共存在568个不同的科目。 每个科目的平均图像数为29。最低和最高年龄分别为1和101。每个科目的平均年龄范围是50.3岁。

2020-02-26

directx实现曲面细分

directx11实现曲面细分的简单示例程序。环境win8.1,vs2013。

2014-08-14

Google Save All Resources 插件

要保存网站内容,一种做法是直接右键另存为整个网页。虽然有时网页也能正常运行,但不可避免地丢失了网站文件夹结构。当然,你也可以在Sources中挨个文件地另存为,然后重新建立文件夹结构。今天给大家推荐一款扩展,可以很好的保留目录结构。 1、下载安装扩展。 2、打开需要下载保存的网站并按快捷键F12打开开发者工具。 3、翻到最后一个选项选择resourcessaver,点击Save All Resources即可

2020-10-08

遥感所遥感概论考研真题

中科院遥感应用所遥感概论考研的真题,还有考研大纲,复习资料等等。

2013-09-30

envi散点图扩展补丁

envi散点图扩展补丁,envi4.7与envi5.0测试过了,均可用

2012-11-12

win32 opengl的例子

opengl1.0 win32的一些例子,完全是win32底层写,只依赖基本的OpenGL库,win32创建窗口 比较底层适合学习

2020-08-31

insightface_distill.rar

人脸识别蒸馏代码

2021-05-07

ConsoleApplication1.rar

用于人脸对齐的c++代码,把斜着的脸变换为正脸

2021-05-07

freeglut-3.0.0 - 副本.zip

freeglut,版本3.0.0,源码,vs2015 sln文件和demo程序。Freeglut是Glut库(OpenGL Utility Toolkit,OpenGL实用工具包)的免费开源替代品。它是由Pawel W. Olszta在1999年12月创建,最新版本为2015年3月的3.0版本。

2020-08-29

cfppairsff.txt

CFP:500个身份,每个身份有10个正脸,4个侧脸。评估方案:frontal-frontal (FF) and frontal-profile (FP) 人脸验证,有十个文件夹,每个文件夹有350个相同人和350个不同人。本文用CFP-FP进行挑战。这个验证集cfp_ff pairs.

2020-02-26

opengl使用unity3d中的lightmap

opengl使用unity3d中的lightmap

2015-01-07

unity3d脚本

将unity3d中的模型导出到obj文件,并有让模型旋转的脚本。

2015-01-07

cfppairsfp.txt

CFP:500个身份,每个身份有10个正脸,4个侧脸。评估方案:frontal-frontal (FF) and frontal-profile (FP) 人脸验证,有十个文件夹,每个文件夹有350个相同人和350个不同人。本文用CFP-FP进行挑战。这个验证集cfp_fp pairs.

2020-02-26

GIS图标下载

GIS图标,包括arcinfo软件,supermap软件,mapx软件等知名软件的图标。

2014-01-09

WebFace260M.pdf

本文介绍一个大规模的人脸识别数据集:WebFace260M,由 4M identities(身份)和 260M 人脸组成,为百万级深度人脸清洗和识别提供了很好的资源。

2021-10-12

Qt4.8.4和Echarts5.3.3绘制图表例子

Qt4.8.4和Echarts5.3.3绘制图表例子。 ECharts,商业级数据图表,它是一个纯JavaScript的图标库,常用的图表形式,如折线图、柱状图,饼状图、雷达图等,都可绘制,而且效果好看。这是做Web前端的,经常会用到的工具。这里我就不细说ECharts,一则这个官网教程很详细,再则我也是个门外汉,只会简单的。而Qt要显示web部分的东西,肯定是要用到QtWebkit(Qt4)或者 QtWebEngine(Qt5),这个视版本而定。 ECharts 提供了常规的折线图、柱状图、散点图、饼图、K线图,用于统计的盒形图,用于地理数据可视化的地图、热力图、线图,用于关系数据可视化的关系图、treemap、旭日图,多维数据可视化的平行坐标,还有用于 BI 的漏斗图,仪表盘,并且支持图与图之间的混搭。

2022-09-17

echarts-5.3.3

ECharts,商业级数据图表,它是一个纯JavaScript的图标库,常用的图表形式,如折线图、柱状图,饼状图、雷达图等,都可绘制,而且效果好看。这是做Web前端的,经常会用到的工具。这里我就不细说ECharts,一则这个官网教程很详细,再则我也是个门外汉,只会简单的。而Qt要显示web部分的东西,肯定是要用到QtWebkit(Qt4)或者 QtWebEngine(Qt5),这个视版本而定。 ECharts 提供了常规的折线图、柱状图、散点图、饼图、K线图,用于统计的盒形图,用于地理数据可视化的地图、热力图、线图,用于关系数据可视化的关系图、treemap、旭日图,多维数据可视化的平行坐标,还有用于 BI 的漏斗图,仪表盘,并且支持图与图之间的混搭。

2022-09-17

Least-squares estimation of transformation parameters between tw

Least-squares estimation of transformation parameters between two point patterns。 相似变换相当于等距变换和均匀缩放的一个复合,即为: 左上角2*2矩阵为旋转部分,右上角为平移因子。它有四个自由度,即旋转、x方向平移、y方向平移和缩放因子s。相似变换后长度比、夹角保持不变,其与相似三角形类似。 虽然相似变换和仿射变换的变换矩阵一样,但是其定义不一样。因为相似变换中不存在倾斜变换(也叫错切变换、剪切变换、偏移变换)、翻转变换,而仿射变换中存在。

2022-06-23

国际标准的数据库设计说明书框架

国际标准的数据库设计说明书框架,

2022-03-26

sqlite3.38.0

   SQLite是一款轻量级的、基于文件的嵌入式数据库,实现自包容、零配置、支持事务的SQL数据库引擎。与其他数据库管理系统不同,SQLite 的安装和运行非常简单,在大多数情况下,只要确保SQLite的二进制文件存在即可开始创建、连接和使用数据库。第一个Alpha版本诞生于2000年5月,直到今天已经成为最流行的嵌入式数据库,包括Google在内的许多公司在其桌面软件中亦使用SQLite存储用户数据,由此看来,其稳定性毋庸置疑。

2022-03-12

C++序列化和反序列化

​ 很多人都知道rapidjson这个json库,大家也都知道他的高效,可是你一定也对他的使用方法,函数API接口感受到非常不适应,你一定非常怀念使用java和C#对一个实体类的那么轻松加简单的直接json序列化,本篇博客使用一个RapidJsonHelper类,将帮你实现对一个C++实体类的的序列化和反序列化。rapidjson的版本是1.1。 ​

2022-03-10

roc曲线绘制2.rar

人脸识别roc曲线绘制python脚本代码

2021-05-07

QComboBox实现下拉框check勾选

QComboBox实现下拉框check勾选

2021-12-02

linux-5.15.6.tar.xz

linux源码 5.15.6,不需要多说了,大家研究

2021-12-03

linux5.8.1中的kfifo

linux5.8.1中的kfifo,无锁队列,用于单生产者和单消费者的多线程

2021-12-03

windows Xshell6Portable_50151.zip

Xshell 是一个强大的安全终端模拟软件,它支持SSH1, SSH2, 以及Microsoft Windows 平台的TELNET 协议。Xshell 通过互联网到远程主机的安全连接以及它创新性的设计和特色帮助用户在复杂的网络环境中享受他们的工作。 Xshell可以在Windows界面下用来访问远端不同系统下的服务器,从而比较好的达到远程控制终端的目的。

2021-12-04

用于服务器和客户端之间传输文件的Xftp6.rar

xftp是一个功能强大的sftp、ftp 文件传输软件。使用了 xftp 以后,ms windows 用户能安全地在 unix/linux 和 windows pc 之间传输文件。简单易操作的界面很适合开发者使用。

2021-12-04

insightface.rar

insightface老版本,供大家学习使用。

2021-09-09

Memory Reordering Caught in the Act

When writing lock-free code in C or C++, one must often take special care to enforce correct memory ordering. Otherwise, surprising things can happen.

2021-10-19

insightface 2020年9月份的版本

insightface 2020年9月份的版本

2021-09-09

mxnet-memonger.pdf

mexnet memonger论文

2021-09-01

testmodel2_verifypair_gpu_outfeature.py

用于人脸识别图片的feature生成,并以txt文件存储起来。

2021-05-07

dvgg2 - 副本.py

下载vggface2脚本代码 python

2021-05-07

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除