- 博客(5)
- 收藏
- 关注
原创 datawhale_data_analysis_task3_建模和评估
建模和评估-建模 import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt from IPython.display import Image %matplotlib inline plt.rcParams['font.sans-serif'] = ['SimHei']#正常显示中文标签 plt.rcParams['axes.unicode_minus'] = False#正常
2021-07-22 21:36:37 184
原创 datawhale_data_analysis_task2_1数据清洗及特征处理
数据清洗及特征处理 依旧先导入numpy,pandas和数据 #加载库 import pandas as pd import numpy as np #加载数据 df = pd.read_csv('train.csv') df.head(3) PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket
2021-07-15 23:34:28 212
原创 datawhale_data_analysis_task2_2数据重构
数据重构 #导入库 import pandas as pd import numpy as np 2.4 数据的合并 2.4.1 观察四个数据 #载入数据 text_left_up = pd.read_csv("data/train-left-up.csv") text_left_down = pd.read_csv("data/train-left-down.csv") text_right_up = pd.read_csv("data/train-right-up.csv") text_right_d
2021-07-15 23:29:42 175
原创 data whale_data_analysis_task2_数据可视化
数据可视化 先导入所需的库和数据 %matplotlib inline import numpy as np import pandas as pd import matplotlib.pyplot as plt text = pd.read_csv(r'result.csv') text.head() Unnamed: 0 PassengerId Survived Pclass Name Sex
2021-07-15 23:27:45 361
原创 datawhale_data_analysis_task1_数据载入及初步观察
第一章:数据载入及初步分析 1.1载入数据 1.1.1导入pandas和numpy import numpy as np import pandas as pd 简单来说,numpy是用来处理N维数组(线性代数)问题的工具,pandas是一个数据分析工具。这两个也是数据分析中最主要的工具。 1.1.2 载入数据 载入数据的路径有两种表达方式,相对路径和绝对路径,但都需要用到pd.read_代码,本章我们使用的数据是csv格式,所以载入数据的代码就是pd.read_csv #df = pd.read_csv
2021-07-13 17:14:59 228
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人