数与抽象之实数和复数

实数和复数

实数系包含了所有能够用十进制无穷小数表示的数字。这个概念看似简单,实则不易,其中的缘由我们会在下一个系列文章加以解释。而现在,让我们来讨论一下将有理数系扩充到实数系的原因。我要讲的是,这原因正与引入负数和分数的理由类似:它们使我们能够求解某些方程,缺少它们我们则无法求解。

“无理数的发现与数学模型的扩展:从公元前6世纪的惊异到今天的接受”

这些方程中最著名的一个莫过于 x 2 = 2 x^2=2 x2=2。在公元前6世纪,毕达哥拉斯学派发现 2 \sqrt{2} 2 是无理数,即它不能表示为一个分数。(我们将在下一个系列文章中给出证明。)当时这项发现激起了一片错愕,但时至今日我们已经能够欣然接受:要想将正方形对角线的长度之类的事物模型化,就必须扩充我们的数系。抽象方法再一次使我们的任务变得轻易。我们引入一种新的符号—— 2 \sqrt{2} 2 ,并引入一条说明它能够做什么的新规则:它的平方等于2。

“序与数的比较:无理数和负数的区分与运算的实用性”

如果你对此颇有研究,你可能会反对我刚才说的,理由是,这样的规则并不能区分, 2 \sqrt{2} 2 − 2 -\sqrt{2} 2 。处理这个问题的办法之一就是向我们的数系中引入一个新的概念——。比较数和数之间的大小总是有用处的,而且这还能使我们通过 2 \sqrt{2} 2 的额外的性质一一大于0——来识别它。不过即便没有这种性质,我们也已经能够做一些运算,例如:
1 2 − 1 = 2 + 1 ( 2 − 1 ) ( 2 + 1 = 2 + 1 ( 2 ) 2 − 2 + 2 − 1 \frac{1}{\sqrt{2}-1}=\frac{\sqrt{2}+1}{(\sqrt{2}-1)(\sqrt{2}+1}=\frac{\sqrt{2}+1}{(\sqrt{2})^2-\sqrt{2}+\sqrt{2}-1} 2 11=(2 1)(2 +12 +1=(2 )22 +2 12 +1 = 2 + 1 2 − 1 = 2 + 1 =\frac{\sqrt{2}+1}{2-1}=\sqrt{2}+1 =212 +1=2 +1
而且,区分 2 \sqrt{2} 2 − 2 -\sqrt{2} 2 其实是有一点好处的一一上面的计算对这两个数都是成立的。

“虚数与复数的引入:抽象观点下的数系扩充与反对观点的考量”

从用来描述数系每次扩充所得到的新数的名字,我们能够发现在历史上对抽象方法质疑的一些痕迹,比如“负的”和“无理的”。但更让人难以接受的还在后面,这就是“虚幻的”,或者“复杂的”数,即形如a+bi的数,其中a和b均实数,i是-1的平方根。
从具象的观点来看,我们会很快就摈弃一1的平方根:因为任何数的平方都是正的,-1根本就没有平方根,故事到此为止。然而,若采纳了抽象的观点,这种反对意见就显得软弱无力了。只要引入方程 x 2 = − 1 x^2=-1 x2=1的解并把它称作i就好了,什么不继续单纯地把数系扩充下去呢?为什么偏偏它的引入就应该比之前 2 \sqrt{2} 2 的更值得反对呢?

“虚数与抽象思维:i的引入与对实在性的考量”

一种回答大概是, 2 \sqrt{2} 2 能够按十进制小数展开,(原则上)能够计算到任意精度,而i就与此不同了。但这说的只不过是我们已经知道的事情,即i不是实数——正如 2 \sqrt{2} 2 不是有理数一样。这并不能阻挡我们扩充数系,在其中进行如下的运算:
1 i − 1 = i + 1 ( i − 1 ) ( i + 1 ) = i + 1 i 2 − i + i − 1 = i + 1 − 1 − 1 \frac{1}{i-1}=\frac{i+1}{(i-1)(i+1)}=\frac{i+1}{i^2-i+i-1}=\frac{i+1}{-1-1} i11=(i1)(i+1)i+1=i2i+i1i+1=11i+1 = − 1 2 ( i + 1 ) =-\frac{1}{2}(i+1) =21(i+1)
i和 2 \sqrt{2} 2 之同最主要的区别就是我们被迫抽象地去思考,而对于 2 \sqrt{2} 2 我们则还有备选方案,可以将它具体地表示为1.4142…,或者看作单位正方形的对角线长度。要看出为什么i没有这样的表示方法,不妨问问自己这个问题:-1的两个平方根中,哪个是i哪个是-i呢?这个问题是没有意义的,因为我们对i所定义的唯一的性质就是平方等于-1。既然-i也有同样的性质,那么关于i成立的那些命题,如替换为关于-i的相应命题,必定依然成立。一旦领会了这一点,就很难再赞同i指示一个独立存在的实在的客体。

“感受性与抽象定义:色彩体验、语言系统和数学对象的讨论”

这和一个著名的哲学难题有相似之处。你对红色所产生的感受与我对绿色产生的感受(交换亦可)有没有可能是相同的呢?一些哲学家很严肃地思考这个问题,并定义“感受性”一词来表示我们所拥有的绝对的内在体验,比如我们对色彩的体验。而另一些人并不相信感受性。在他们看来,“绿色”这样的词有更抽象的定义,那就是根据它在语言系统中所发挥的作用,也就是说,根据它与“草地”、“红色”等概念之间的关系。因此,就这个论题,要想从人们淡论色彩的方式来推断出他们的态度是不可能的,除非在哲学争论当中。类似地,在实践中,关于数和其他数学对象,重要的只是它们所遵循的规则。

“复数的广泛应用:代数基本定理、科学和工程中的复数的重要性”

如果说为了使方程 x 2 = − 1 x^2=-1 x2=1有解我们引入i,那么其他类似的方程呢?比如 x 4 = − 3 x^4=-3 x4=3或者 2 x 6 + 3 x + 17 = 0 2x^6+3x+17=0 2x6+3x+17=0呢?值得注意的是,人们发现,所有这样的方程都可以在复数系中求解。也就是说,我们通过接受i作出小小的投资,结果得到了许多倍的回报。发现这个事实的历史过程有点复杂,但人们通常将它归功于高斯。这个事实被人们称为代数基本定理,它给我们提供了令人折服的证据,使我们相信i的确有合情合理、自然而然的地方。我们的确无法想象一个篮子里有i个苹果,车行途中经过了i个小时,银行账户透支了i英镑。但对数学家来说,复数系己经必不可少。对科学家和工程师同样也是。比如,量子力学的理论就高度依赖于复数。复数作为最佳的例证之一,向我们表明了一条概括性原则:

一种抽象的数学构造若是充分自然的,则基本上必能作为模型找到它的用途。

总结

本文讨论了数学中实数和复数的概念以及它们的引入和应用。实数系是包含所有能够用十进制无穷小数表示的数字,而复数系则是在有理数系的基础上引入了虚数单位i来解决特定的方程。这些方程包括平方根为负数的情况,无理数的发现以及其他类似的方程。复数的引入和扩充给数学提供了更广阔的应用领域,包括代数基本定理、科学和工程中的实际问题求解等。虽然复数在具象观点下可能显得虚幻或抽象,但它们在数学模型中具有自然而合理的地位。抽象方法和概念的引入在数学领域中起着重要作用,能够拓展数学的应用范围并提供解决问题的工具。

  • 18
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

忆梦九洲

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值