我不知道大家在走上定投这条羊肠小道的时候有没有听过一句论断性的话叫做:净值波动越大的基金就越适合定投。或者有的时候也会被简单解读成“波动越大的基金定投收益率就越高”。
的确,定投具有在基金单位净值高的时候获得的份额数量少,净值下跌的时候获得的份额数量多的特点,在净值的大幅波动中反而能够更好的降低投资成本,从而获得较高的回报率。
这一点在直觉上其实挺难理解的,所以我打算小试一下当年学的数学牛刀来个理论证明。
接下去,就是见证奇迹的时刻……
证明:先假设定投每次都投入一个单位,并且第t期投入的单位成本为NAV(t)
,t=1,2,3……,T
,那么截止到最后一次投入的时点,投入的单位平均成本是(T/投入的总份数
),获得的单位回报是NAV(T)
。
下面有公式推导我就手写啦!
在T和投资平均成本一定的情况下,总份数的大小就取决于上图中红圈部分的大小。
更进一步的,红圈部分又可以拆成T*(T-1)/2
对这样的组合相加:
NAV(n)/NAV(m)+NAV(m)/NAV(n)
而:
到这里基本上就差不多了,在平均净值相同的情况下,NAV(n)
和NAV(m)
相差越大,分子的平方项越大,分母的乘积项越小,也就是总的份数会越多,乘以终值NAV(T)
之后的定投收益自然就越高。
证明完毕。
到这里,看懂的请举手。
好,请放下,哦,原来一个都没有看懂对吧,所以我大概是白证了,幸好我本来也就是为了过把做数学证明题的瘾。
这个题目如果是个填空题或者选择题的话其实可以证得很简洁。
请看:
假设总共就定投四期,蓝色线代表基准情况,也就是波动最小(波动为零)的情况——体现为净值一直都是1不变,这样四期投下来每期1单位最后总份额就是4单位(相应市值为4,下同)。
红色线代表变化情况1,首尾净值不变,中间浪那么两下,第二期净值为1.5,第三期净值为0.5,这样四期投完的总份额为1/1+1/1.5+1/0.5+1/1=4.67
。
毫无疑问,变化1的波动比之基准增大之后定投的收益变大了。
我再来加一锤:
变化2继续放大波动率,首尾不变,第二期净值放大为2,第三期净值略减为0.45,这样四期投完的总份额为1/1+1/2+1/0.45+1/1=4.72
。
你没有看错,变化2的收益竟然比变化1的收益要大,就说你们的眼镜是不是有些已经掉在地上了吧。
以上证明不管复杂还是简单,似乎都可以为文章开头的那个论断板上钉个钉的样子,直到这个变化3的出现:
变化3的总份额为1/1+1/1.5+1/1.5+1/1=3.33
,明显比基准的4份数要少收益要小,可是,变化3的波动率明明比基准情况的无波动要大啊,这是怎么肥四?
实际上,这种情况我在之前做中美股指的定投对比时候也发现了,请看沪深300
对标普500
的指数情况图:
归一化之后长这样:
两者的走势起点和终点几乎重合,似乎有殊途同归于尽的味道;从两者起点同时开始定投到终点的绝对收益率情况如下:
很明显的沪深300的波动率要大多了,但是最终的定投收益并不是波动率大的沪深300
更大而是波动率小的标普500
更大。
这里有一点极其关键,就是波动大不能只是单边向上的大(比如变化3和沪深300较之标普500),而是上下都要大,而且最好下的时候能下的多一点。
看一个和变化3相反的例子:
上图中变化4的总份额为1/1+1/0.5+1/0.5+1/1=6
,妥妥跑赢前面所有的变化1/2/3
。
至此得到修正结论一:定投起点终点相同的情况下,定投往下波动幅度越大的基金收益率越高。
接下去再来看个波动略特别的例子:
上图中的变化5看上去也是一条直线,表面上似乎没有波动(实际上当然有波动,所以只能称之为内心毫无波动),但是很明显的变化5的定投收益肯定比基准要高:变化5的份额为1/1+1/1.33+1/1.67+1/2=2.85
,但是因为变化5最终净值从1变成了2,所以其终值为2.85*2=5.7>;;基准的4
。
这里默默的引入了一个概念,叫做直线的斜率。
至此还可以得到第二个结论:定投净值斜率越大的基金收益越大。
讲到斜率我不得不多讲几句,我们都知道现实世界的指数几乎不可能是一条条如基准和变化5那般直挺挺的线,那岂不是上述的结论二没有用武之地了。
但是斜率和我之前曾经提过的一个概念是相通的,这个概念叫做趋势线。
学过数学的大概都知道每一条趋势线如果用一次函数来表达的话都可以写成y=kx+b(斜截式)这种样子,其中的系数k就是这条趋势线的斜率。
比如这样的:
上图是医药100指数的趋势线及其一次函数的表达式,可以看到医药100趋势线的斜率k等于2.8532。
懂行的小伙伴可能会说这个斜率是趋势线的斜率又不是(确切来说应该是不全是)医药100指数的斜率,这又能说明什么问题呢?
这里必须要引入下面那个R方,这个R方叫做拟合度,简单来说就是趋势线可以代表指数的程度,拟合度越高(越接近1越高),可以代表指数的程度就越高,因此这个系数也叫做可决系数。
既然这里的R方0.8532还算是一个比较高的拟合度,那么指数趋势线的斜率基本就可以替代指数本身的斜率了。
不瞒大家说,我经常拿医药100指数做定投的例子是有原因的,这是因为医药100是截止目前我发现的指数中斜率最大的,并且拟合度还难得的又很高。
作为对比,中证消费指数的趋势线的斜率为1.6924。
一些主流宽基指数的趋势线斜率甚至都不到1。比如,不看拟合度的话,沪深300的斜率为0.416,上证50的斜率为0.2119;最低的标普500的斜率甚至仅为0.1757,关键其拟合度还接近0.8,这就是为什么我不太推荐大家定投美股指数的重要原因。
讲到这里我知道大家心中一定还存有另一个疑问,请听我继续举例说明。
俗话说林子大了什么指数都有,在实际的走势中确实还会出现这么一种形状,请看:
变化6这种情况的份额在积累过程中可能不是那么显山露水,前三期很丑小鸭,最后的总份额也仅为1/1+1/1+1/1+1/2=3.5
,但是其最终的市值却是全场最大的3.5*2=7
,甚至比斜率一路向上的变化5和底部积攒份额最多的变化4的收益还要大,直教人四脚朝天五体投地。
这种情况包含了一个重要因素,就是其在蛰伏很久很久很久很久之后最后能出现一个快速的暴涨,以此瞬间拉开与普罗大众们的差距。
聪明的小伙伴一定已经想到了一个指数,请看:
没错,就是券商指数了。
表面上看起来券商指数的趋势线斜率一点都不高,也就是1.3不到一点;而且其趋势线的拟合度不足0.5,对指数曲线的线性拟合效果非常一般。简单来说就是券商指数的趋势线和拟合度基本上是没法看的。
但是如上图所示,券商指数却是所有的指数中最接近变化6的一个指数,所以别看券商指数平(xiong)日(shi)里吊儿郎当相貌平平的,一旦上了场(niu)面(shi),就会如《韩非子·喻老》所记载的:三年不飞,飞将冲天;三年不鸣,鸣将惊人!
不相信历史会重演的小伙伴我再给你们举个例子。
比如说上面一鸣惊人的典故最早讲的是春秋五霸之一的楚庄王,但是200年后的齐威王又重演了一把一鸣惊人,所以历史当然会重演只是不会简单重复罢了,这就像券商指数一样一朝暴涨肯定会出现,只是出现的时机和表现形式(最终的冲高收益率)可能不一样罢了。