Pandas秘籍【第九章】

原文:Chapter 9

import pandas as pd
import sqlite3

到目前为止,我们只涉及从 CSV 文件中读取数据。 这是一个存储数据的常见方式,但有很多其它方式! Pandas 可以从 HTML,JSON,SQL,Excel(!!!),HDF5,Stata 和其他一些东西中读取数据。 在本章中,我们将讨论从 SQL 数据库读取数据。

您可以使用pd.read_sql函数从 SQL 数据库读取数据。 read_sql将自动将 SQL 列名转换为DataFrame列名。

read_sql需要 2 个参数:SELECT语句和数据库连接对象。 这是极好的,因为它意味着你可以从任何种类的 SQL 数据库读取 - 无论是 MySQL,SQLite,PostgreSQL 或其他东西。

此示例从 SQLite 数据库读取,但任何其他数据库将以相同的方式工作。

con = sqlite3.connect("../data/weather_2012.sqlite")
df = pd.read_sql("SELECT * from weather_2012 LIMIT 3", con)
df
iddate_timetemp
012012-01-01 00:00:00
122012-01-01 01:00:00
232012-01-01 02:00:00

read_sql不会自动将主键(id)设置为DataFrame的索引。 你可以通过向read_sql添加一个index_col参数来实现。

如果你大量使用read_csv,你可能已经看到它有一个index_col参数。 这个行为是一样的。

df = pd.read_sql("SELECT * from weather_2012 LIMIT 3", con, index_col='id')
df
date_timetemp
id
12012-01-01 00:00:00
22012-01-01 01:00:00
32012-01-01 02:00:00

如果希望DataFrame由多个列索引,可以将列的列表提供给index_col

df = pd.read_sql("SELECT * from weather_2012 LIMIT 3", con, 
                 index_col=['id', 'date_time'])
df
temp
iddate_time
12012-01-01 00:00:00
22012-01-01 01:00:00
32012-01-01 02:00:00

9.2 写入 SQLite 数据库

Pandas 拥有write_frame函数,它从DataFrame创建一个数据库表。 现在这只适用于 SQLite 数据库。 让我们使用它,来将我们的 2012 天气数据转换为 SQL。

你会注意到这个函数在pd.io.sql中。 在pd.io中有很多有用的函数,用于读取和写入各种类型的数据,值得花一些时间来探索它们。 (请参阅文档!

weather_df = pd.read_csv('../data/weather_2012.csv')
con = sqlite3.connect("../data/test_db.sqlite")
con.execute("DROP TABLE IF EXISTS weather_2012")
weather_df.to_sql("weather_2012", con)

我们现在可以从test_db.sqlite中的weather_2012表中读取数据,我们看到我们得到了相同的数据:

con = sqlite3.connect("../data/test_db.sqlite")
df = pd.read_sql("SELECT * from weather_2012 LIMIT 3", con)
df
indexDate/TimeTemp (C)Dew Point Temp (C)Rel Hum (%)Wind Spd (km/h)Visibility (km)Stn Press (kPa)Weather
002012-01-01 00:00:00-1.8-3.98648101.24
112012-01-01 01:00:00-1.8-3.78748101.24
222012-01-01 02:00:00-1.8-3.48974101.26

在数据库中保存数据的好处在于,可以执行任意的 SQL 查询。 这非常酷,特别是如果你更熟悉 SQL 的情况下。 以下是Weather列排序的示例:

indexDate/TimeTemp (C)Dew Point Temp (C)Rel Hum (%)Wind Spd (km/h)Visibility (km)Stn Press (kPa)Weather
0672012-01-03 19:00:00-16.9-24.8502425101.74
11142012-01-05 18:00:00-7.1-14.4561125100.71
21152012-01-05 19:00:00-9.2-15.461725100.80

如果你有一个 PostgreSQL 数据库或 MySQL 数据库,从它读取的工作方式与从 SQLite 数据库读取完全相同。 使用psycopg2.connect()MySQLdb.connect()创建连接,然后使用

pd.read_sql("SELECT whatever from your_table", con)

9.3 连接到其它类型的数据库

为了连接到 MySQL 数据库:

注:为了使其正常工作,你需要拥有 MySQL/PostgreSQL 数据库,并带有正确的localhost,数据库名称,以及其他。

import MySQLdb con = MySQLdb.connect(host="localhost", db="test")

为了连接到 PostgreSQL 数据库:

import psycopg2 con = psycopg2.connect(host="localhost")
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值