刷题笔记 96. 不同的二叉搜索树

96. 不同的二叉搜索树
难度: 中等

定义函数f(i),对于第i个结点,存在f(i)种二叉搜索树
那么对于函数G(n),定义为n个结点的所有可能性之和,则G(n)等于n个结点中每一个结点对应的种数之和,进而易得
G(n) = f(1) + f(2) + ··· + f(n)
例如G(3),表示有3个结点时,共有f(0) + f(1) + f(2)种可能
假设存在n个结点,那么对于任意的f(i),它左边有 i - 1 - 1 + 1 = i - 1个结点,右边有 n - (i + 1) + 1 = n - i个结点
那么f(i)共有G(i - 1) * G(n - i)种可能性
代入上式,易得
G(n) = G(0) * G(n - 1) + G(1) * G(n - 2) + ··· + G(n - 1) * G(0)
这就是dp[n]的递推公式
class Solution {
    public int numTrees(int n) {
        // dp[i]表示,有i个节点时,有几种可能性
        int[] dp = new int[n + 1];
        dp[0] = 1;
        dp[1] = 1;
        for (int i = 2; i <= n; i++) {
            for (int j = 0; j < i; j++) {
                dp[i] += dp[j] * dp[i - j - 1];
            }
        }
        return dp[n];
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值