96. 不同的二叉搜索树
难度: 中等
定义函数f(i),对于第i个结点,存在f(i)种二叉搜索树
那么对于函数G(n),定义为n个结点的所有可能性之和,则G(n)等于n个结点中每一个结点对应的种数之和,进而易得
G(n) = f(1) + f(2) + ··· + f(n)
例如G(3),表示有3个结点时,共有f(0) + f(1) + f(2)种可能
假设存在n个结点,那么对于任意的f(i),它左边有 i - 1 - 1 + 1 = i - 1个结点,右边有 n - (i + 1) + 1 = n - i个结点
那么f(i)共有G(i - 1) * G(n - i)种可能性
代入上式,易得
G(n) = G(0) * G(n - 1) + G(1) * G(n - 2) + ··· + G(n - 1) * G(0)
这就是dp[n]的递推公式
class Solution {
public int numTrees(int n) {
// dp[i]表示,有i个节点时,有几种可能性
int[] dp = new int[n + 1];
dp[0] = 1;
dp[1] = 1;
for (int i = 2; i <= n; i++) {
for (int j = 0; j < i; j++) {
dp[i] += dp[j] * dp[i - j - 1];
}
}
return dp[n];
}
}