自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(9)
  • 收藏
  • 关注

原创 DSP2833x基于模型的电机控制设计 Simulik自动生成代码

摘要:本文介绍了Simulink在嵌入式领域的应用,深入探讨了Simulink在DSP28335开发板上的应用模型,包括直流电机、PMSM和步进电机控制模型,并提供了LED、串口和CAN等通讯相关的Simulink模型。内容为Simulink在嵌入式领域的应用,具体是Simulink在DSP28335这块开发版上的应用模型:包括直流电机、PMSM、步进电机控制模型,还有常见的LED、串口、CAN等通讯相关Simulink模型,模型都有相关解释文件。MATLAB Simulink仿真及代码生成技术入门教程。

2023-12-14 12:23:31 501

原创 MATLAB代码:微电网两阶段鲁棒优化经济调度程序

最终通过仿真分析验证了所建模型和求解算法的有效性,具体内容可自行查阅,程序基于MATLAB yalmip调用CPLEX实现求解,整体复现效果良好,由于无法获得原始数据,结果与原文有些许差别,不影响结果的正确性,买之前请确定需要再来联系,代码一经发货概不退换。结果表明,在不同的场景和条件下,所提出的微电网两阶段鲁棒优化经济调度程序能够得到满足运行成本最低的调度方案。主要内容:构建了微网两阶段鲁棒调度模型,建立了min-max-min 结构的两阶段鲁棒优化模型,可得到最恶劣场景下运行成本最低的调度方案。

2023-12-14 12:21:19 1005

原创 基于simulink的FCV燃料电池电动汽车模型

模型的参数和输入变量都可以进行交互式编辑,并通过实时仿真来验证模型的准确性和稳定性。截图显示了部分模型的运行效果,从中可以看出模型的输入输出关系和系统的动态变化。该版本的Matlab具备了充分的功能和支持,能够满足模型相关的运算和仿真需求。同时,考虑到燃料电池电动汽车模型的复杂性和计算量,建议使用高性能的计算机和适当的硬件配置来提高模型的运行效率和稳定性。基于Simulink的FCV燃料电池电动汽车模型是一种基于Matlab开发的技术工具,用于模拟和分析燃料电池动力系统在电动汽车中的应用。

2023-12-14 09:52:51 729

原创 buck双闭环控制仿真降压电路PI调节器设计降压斩波电路建模和数学模型建模

结论 本文介绍了一种基于buck双闭环控制的仿真降压电路PI调节器设计方法,并通过建模和仿真验证的过程,展示了这种方法的有效性和实用性。通过滤波器设计、建模、pi调节器设计和仿真验证的流程,我们可以得到一个理想的降压电路控制器,从而实现精确的电压调节。本文将介绍一种基于buck双闭环控制的仿真降压电路PI调节器设计方法,并通过建模和仿真验证的过程,展示了这种方法的有效性和实用性。从滤波器设计到建模,得到被控对象的传递函数,再根据传递函数设计pi调节器,最后把计算出来的pi参数带入仿真验证。

2023-12-14 09:50:14 1435

原创 MATLAB代码:基于蒙特卡洛算法的电动汽车充电负荷预测

主要内容:代码主要做的是电动汽车的充电负荷模拟预测,具体为:从影响电动汽车充电负荷分布的因素入手,将电动汽车按用途进行分类,具体分为:私家车、出租车、公务车以及公交车,分别研究探讨不同类型电动汽车的充电方式以及时间特性规律,同时综合考虑分时电价、多样的充电模式对电动汽车负荷分布的影响,建立出每一种类型的电动汽车特有的负荷计算模型,根据模型对北京某地区的电动汽车充电负荷进行时间分布预测研究,并对预测结果进行分析。引言: 随着电动汽车的普及,如何合理预测电动汽车的充电负荷成为了一个亟待解决的问题。

2023-12-14 09:40:05 377

原创 PSO-BP粒子群优化BP神经网络多特征分类预测(Matlab)

在现代社会中,许多问题都需要通过分类和预测来解决。其中,BP神经网络是一种常见的神经网络模型,它通过不断调整权值和阈值来优化网络,从而实现对多类别数据的准确分类。然而,BP神经网络在优化初始权值和阈值上存在一些问题,这可能导致网络的收敛速度较慢,甚至无法达到较高的准确率。为了解决这个问题,本文提出了一种基于粒子群优化(PSO)的BP神经网络方法,可以显著提高分类预测的准确率。Matlab是一种功能强大的科学计算软件,通过其丰富的工具箱和易于使用的编程语言,可以方便地实现BP神经网络的建模和优化。

2023-12-14 09:29:47 503

原创 GWO-GRU多变量回归预测,灰狼算法优化门控循环单元的回归预测(Matlab)

然后,根据其他灰狼个体与“alpha”个体的距离和适应度值,更新所有灰狼个体的位置。首先介绍了数据集和程序文件的结构和用途,然后详细阐述了灰狼算法对学习率、隐藏层节点个数和正则化参数的优化,最后展示了通过命令窗口输出的R2、MAE和MBE指标的结果。实验结果与分析 通过运行我们的GWO-GRU多变量回归预测方法,并在命令窗口输出R2、MAE和MBE等指标,我们可以评估预测模型的性能。3.3 灰狼算法优化参数的设计 在本文中,我们利用灰狼算法优化学习率、隐藏层节点个数和正则化参数,以获得更好的预测模型性能。

2023-12-14 09:26:55 892

原创 PSO-SVM粒子群优化支持向量机的数据分类预测(Matlab)

引言: 在当今大数据时代,机器学习算法在数据分类预测中扮演着重要角色,支持向量机(Support Vector Machine,SVM)作为其中的一种经典方法,以其在高维空间中进行分类的能力而备受瞩目。而PSO-SVM则通过将SVM中的超参数优化问题转化为粒子在搜索空间中的最优化问题,通过不断迭代更新粒子的位置和速度,从而找到最优的权重矩阵W和偏置项b。应用场景 PSO-SVM算法在数据分类预测中具有广泛的应用场景,特别是在大规模数据集和高维特征空间下,其具有较好的性能和稳定性。1.输入多个特征,分四类。

2023-12-14 09:20:49 710

原创 Bayes-CNN贝叶斯优化卷积神经网络多输入单输出回归预测(Matlab)

在实验中,我们使用了6个特征作为输入,通过命令窗口输出MAE、MSE、RMSEP、R^2、RPD和MAPE等评价指标对模型进行了评估。为了进一步优化CNN模型的性能,本文引入了Bayes-CNN贝叶斯优化算法,通过对学习率、批处理样本大小和正则化参数进行优化,提高了模型对多输入单输出回归预测任务的预测准确性。Bayes-CNN贝叶斯优化算法 Bayes-CNN贝叶斯优化算法是基于贝叶斯优化算法和CNN模型的结合,用于自动调节CNN模型的超参数。3.输入6个特征,输出1个变量。

2023-12-14 09:19:04 1265 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除