自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(24)
  • 收藏
  • 关注

原创 鬃毛形态识别与分类:基于YOLOv8的PST方法

本文提出了一种基于YOLOv8的鬃毛形态识别与分类方法,通过引入PST模块,有效提高了对鬃毛这类细长目标的检测精度。实验结果表明,该方法在准确率、实时性和鲁棒性方面均表现出色,具有实际应用价值。扩大数据集规模,增加更多种类和形态的鬃毛样本,提高模型的泛化能力;优化模型结构,进一步减少计算量,提高推理速度,适应嵌入式设备部署;探索更先进的注意力机制,如视觉Transformer,进一步提升对复杂形态鬃毛的识别能力。

2025-12-21 14:15:18 1046

原创 YOLOv5-AFPN-P2345-Custom:混凝土桥梁结构劣化状态检测新方案

本文提出了一种改进的YOLOv5-AFPN-P2345-Custom算法用于混凝土桥梁结构劣化状态检测。通过引入CBAM注意力机制增强特征提取能力,优化AFPN特征金字塔网络提高多尺度特征融合效果,改进损失函数(Focal Loss+CIoU Loss)提升小目标检测精度,并结合多种数据增强技术增强模型泛化能力。实验结果表明,该算法在5000张桥梁劣化图像数据集上表现出色,相比原始YOLOv5等模型显著提高了检测精度,特别是在细小裂缝等小目标检测方面表现优异,为桥梁结构健康监测提供了有效的自动化检测方案。

2025-12-21 13:24:00 796

原创 芦笋嫩芽与成熟度检测识别系统实现_1

本文介绍了一个基于计算机视觉的芦笋嫩芽与成熟度检测识别系统。该系统采用分层架构设计,包括数据采集、图像预处理、特征提取和决策四个核心模块。通过HSV色彩空间分割、形态学处理等技术实现芦笋图像预处理,并提取颜色、纹理和形状三类特征。系统使用机器学习模型对标准化后的特征进行分类,最终输出芦笋的嫩芽状态和成熟度判断结果。该系统可帮助优化芦笋采收时机,提高农业生产效率,具有重要的农业应用价值。

2025-12-18 09:20:26 971

原创 马铃薯病虫害智能检测:基于YOLOv8-LQEHead的识别系统

本文提出了一种基于改进YOLOv8-LQEHead的马铃薯病虫害智能检测系统。该系统采用深度学习技术,通过构建包含10种常见病害的5000张图像数据集,设计轻量级查询增强头(LQEHead)优化小目标检测性能。实验表明,该系统在保持25FPS推理速度的同时,达到93.2%的mAP@0.5精度,较基线模型提升3.5个百分点。系统支持云端、边缘设备和移动端多种部署方式,已成功应用于田间监测和农业物联网场景,能提前7-10天发现病害症状,帮助农户减少约20%的产量损失。未来研究将聚焦多模态数据融合和模型轻量化优化

2025-12-18 08:39:56 859

原创 基于YOLOv10n的20种垃圾分类自动识别系统:从铝箔到不可回收塑料

本文提出了一种基于YOLOv10n的20类垃圾分类自动识别系统,涵盖从铝箔到不可回收塑料等多种垃圾类型。通过构建15,000张图像的数据集,采用数据增强和归一化预处理优化模型性能。YOLOv10n模型采用Anchor-Free设计和C2f模块,实现多尺度特征融合,在保持轻量化的同时提升检测精度。实验结果表明,该系统mAP达到89.3%,优于YOLOv5n、YOLOv7-tiny等对比模型,在白色纸张等类别上AP值超过0.92。消融实验验证了各组件对性能的贡献,动态标签分配策略使mAP提升至90.3%。该系统

2025-12-17 19:28:47 938

原创 【机械水表读数识别与数字定位】基于YOLO11-seg-CSP-EDLAN的水表数字识别系统实现

本文提出了一种基于YOLO11-seg-CSP-EDLAN网络的机械水表读数识别系统,通过改进网络结构实现了高精度检测与识别。系统采用部分卷积(PConv)作为核心算子,结合CSP结构和EDLAN注意力机制,在自建数据集上达到97.3%的识别准确率,比传统方法提升15.2%,处理速度达30fps。PConv通过选择性卷积减少计算量23.5%,同时提升小目标检测准确率8.7%。实验验证了该系统在复杂环境下仍能保持高效稳定的性能表现,为智慧水务建设提供了实用解决方案。

2025-12-17 18:52:13 713

原创 微生物细胞检测与识别 大肠杆菌E.coli和其他细菌细胞自动检测与分类 RetinaNet+RegNet模型实现

本文介绍了一种基于深度学习的微生物细胞自动检测与分类系统,采用RetinaNet+RegNet模型架构实现大肠杆菌等细菌的高效识别。该系统通过RegNet提取多尺度特征,结合FPN特征金字塔和Focal Loss改进,显著提升了对微小细菌细胞的检测精度。实验结果显示,该模型在mAP@0.5达到0.912,优于主流检测算法,同时保持32FPS的实时性能。应用场景涵盖临床诊断、食品安全和环境监测等领域。项目已开源,未来将优化模型轻量化和多模态融合,推动微生物检测技术的自动化发展。

2025-12-15 10:47:09 885

原创 钢管表面缺陷检测与识别_YOLO11-C3k2-IDWC改进实现

🎉 本研究通过C3k2和IDWC模块的创新设计,有效提升了钢管缺陷检测的精度和速度。实验结果表明,改进后的YOLO11-C3k2-IDWC算法在mAP@0.5指标上达到0.921,比原始YOLO11提高2.9个百分点,同时保持108FPS的检测速度。轻量化设计:进一步压缩模型大小,适应边缘设备部署多任务学习:结合缺陷分类和分割任务,提供更全面的缺陷信息自监督学习:减少对标注数据的依赖,降低应用门槛希望这篇分享对你有所帮助!如果你有任何问题或建议,欢迎在评论区交流讨论。

2025-12-15 10:09:45 773

原创 【卫星遥感】YOLO11-C3k2-SFA太阳能电池板检测详解

本文提出了一种改进的YOLO11-C3k2-SFA模型用于太阳能电池板检测。针对复杂光照条件、小目标检测等挑战,模型引入C3k2模块增强特征提取能力,采用SFA模块实现多尺度特征融合。通过数据增强、优化损失函数等训练策略,模型在测试集上达到92.3%的mAP,较基线提升3.7%。详细介绍了模型从Keras到ONNX的转换过程,以及基于ONNX Runtime的部署方案,包括TensorRT和CUDA加速实现。该方案有效解决了太阳能电池板检测中的关键问题,为工业应用提供了实用解决方案。

2025-12-12 13:55:52 522

原创 YOLOv8-BiFPN 上臂目标检测与识别实现

本文提出了一种基于改进YOLOv8-BiFPN的上臂检测方法,针对工业场景中上臂检测面临的形态多变、背景复杂等挑战进行优化。通过在BiFPN结构中引入注意力机制和跨尺度特征融合模块,显著提升了模型的特征提取能力。实验结果表明,该方法在自建数据集上达到91.2%的mAP@0.5,相比原始YOLOv8提升2.7%,同时保持较低的计算成本。文章详细介绍了从数据准备、模型训练到预测的完整实现流程,为工业自动化中的上臂检测提供了高效解决方案。

2025-12-12 13:33:04 1005

原创 【自动驾驶】YOLO13-C3k2-IdentityFormer交通标志实时识别系统详解

本文介绍了一个基于YOLO13-C3k2-IdentityFormer架构的高性能交通标志实时识别系统。该系统采用模块化设计,包含YOLO13主干网络、C3k2特征融合模块和IdentityFormer注意力机制头部,实现了92.3%的mAP和30FPS以上的处理速度。系统通过端到端的数据处理流程,包括图像缩放、归一化和张量转换,确保输入数据符合模型要求。C3k2模块创新性地结合了跨尺度特征融合和通道注意力机制,显著提升了小目标检测准确率。该系统经过量化压缩后模型体积减少60%,适用于自动驾驶场景,能够可靠

2025-12-09 15:44:05 515

原创 YOLO11-seg-GoldYolo商店顾客员工身份识别系统原创

Shop_cctv数据集摘要 Shop_cctv是一个用于商店人员识别的计算机视觉数据集,包含192张预处理图像,适用于YOLOv8模型训练。数据集特点包括: 图像统一调整为640x640像素 采用多种数据增强技术(随机裁剪、剪切、亮度/曝光调整、椒盐噪声) 标注两类目标:顾客(customer)和员工(staff) 按标准比例划分为训练集、验证集和测试集 该数据集特别适合开发零售场景下的人员身份识别系统,支持目标检测模型的训练与评估。

2025-12-07 11:49:19 703

原创 【显微镜图像识别】改进YOLO11-C3k2-LEGM实现花粉颗粒形态分类

YOLO(You Only Look Once)系列算法是一种单阶段目标检测算法,以其速度快、精度高的特点在目标检测领域得到了广泛应用。YOLO11是YOLO系列中的最新版本,相比之前的版本在精度和速度上都有显著提升。C3k2-LEGM是YOLO11中的一种改进模块,结合了C3模块和k2注意力机制以及局部-全局特征融合(Local-Global Feature Fusion Module)。这个模块的设计初衷是为了解决小目标检测中的特征丢失问题,对于显微镜图像中的花粉颗粒检测尤为重要。

2025-12-03 16:36:18 666

原创 扑克牌识别与检测:使用Mask R-CNN与X101-32x4d_fpn_pisa模型实现_1

本文介绍了使用Mask R-CNN和X101-32x4d_fpn_pisa模型实现扑克牌识别与检测的方法。通过构建包含多种场景的扑克牌数据集,采用数据增强技术提高模型泛化能力。模型训练采用Detectron2框架,实现了92.3%的mAP@0.5准确率,能够精确识别扑克牌并生成分割掩码。该系统可应用于游戏辅助、自动发牌等场景,未来可优化轻量化部署和实时处理能力。

2025-12-03 15:58:08 530

原创 基于YOLO11-PSFM改进的辣椒炭疽病智能识别系统研究

本文提出了一种基于改进YOLO11-PSFM模型的辣椒炭疽病智能识别系统。通过引入金字塔空间特征融合模块(PSFM),增强了模型对小面积炭疽病斑点的检测能力。系统采用4000张专业标注的辣椒图像数据集,通过数据增强和CLAHE预处理提升模型泛化性。实验表明,改进模型在准确率(94.7%)、召回率(95.8%)等指标上较原始YOLO11提升5.5%以上,同时保持35ms的实时检测速度。该系统为辣椒炭疽病的早期识别和精准防治提供了有效的智能化解决方案。

2025-12-01 15:27:56 757

原创 YOLO11与CSFCN结合的胚胎检测与识别系统详解

本文提出了一种基于YOLOv11与CSFCN结合的胚胎检测与识别系统,旨在提高辅助生殖技术中的胚胎检测精度和效率。系统采用YOLOv11的目标检测能力与CSFCN的特征提取优势相结合,通过多尺度特征融合和注意力机制改进算法性能。实验结果显示,该系统在构建的胚胎数据集上达到92.3%的mAP,检测速度45FPS,显著优于传统方法。该系统已应用于临床实践,可辅助胚胎学家进行客观评估,提高试管婴儿成功率。未来将进一步优化算法,探索多模态数据融合和轻量化模型开发。

2025-12-01 14:41:42 643

原创 古建筑结构类型识别与分类:基于YOLOv10n-GFPN的砖石、混凝土砌块、纪念碑等七大结构自动检测系统

本文提出了一种基于改进YOLOv10n-GFPN的古建筑结构自动识别系统,可高效检测砖石、混凝土砌块等七大结构类型。通过引入分级特征金字塔网络(GFPN)增强多尺度特征感知能力,结合结构化剪枝、深度可分离卷积等轻量化技术,在保持78.6% mAP的同时将模型参数量减少48.4%,推理速度提升80%。实验表明,该系统在3500张古建筑图像数据集上表现优异,为文化遗产数字化保护提供了高效的技术方案,尤其适合在资源受限的边缘设备部署应用。

2025-11-28 11:14:09 817

原创 变速箱油封座零部件缺陷检测与识别——基于YOLO11-C3k2-EMA模型实现

YOLO(You Only Look Once)是一种单阶段目标检测算法,以其速度快、精度高的特点在目标检测领域广泛应用。YOLO11是该系列的最新版本,在保持高检测速度的同时,进一步提升了检测精度和鲁棒性。本文详细介绍了一种基于YOLO11-C3k2-EMA模型的变速箱油封座缺陷检测方法。通过改进的C3k2模块和EMA注意力机制,模型在保持高检测速度的同时,显著提升了检测精度,特别是在处理微小缺陷时表现出色。实验结果表明,该方法能够满足工业现场对缺陷检测的需求,具有较高的实用价值。

2025-11-28 10:17:54 584

原创 基于YOLOX_Tiny的糙米品质分类模型训练与优化实录

YOLOX_Tiny是YOLOX系列中的轻量级版本,专为移动端和边缘设备设计。它采用了Anchor-Free的设计思想,结合了Decoupled Head和Task Alignment Learning(TAL)等创新技术,在保持较高精度的同时大幅降低了计算复杂度。轻量化设计:相比标准YOLOX模型,参数量减少了约70%,更适合资源受限的环境。高效检测:在保持较高精度的同时,推理速度显著提升,适合实时应用场景。易于部署:模型结构简洁,便于在各种平台上部署和优化。

2025-11-23 14:35:06 52 1

原创 海洋生物识别新突破:YOLOv8如何实现14种海洋生物精准检测_1

本研究采用YOLOv8算法实现了14种海洋生物的精准检测。通过构建包含12,856张标注图像的高质量数据集,并应用多种数据增强技术,有效提升了模型性能。实验结果显示,该方法在海洋生物检测任务中达到87.3%的mAP@0.5,相比基线提升12个百分点。研究还开发了实时监测系统,在嵌入式设备上实现每秒15-20帧的检测速度,为海洋生态保护提供了高效的技术支持。未来将进一步扩大数据集规模并优化模型性能。

2025-11-21 12:49:01 37

原创 服装图像风格识别与分类 - Mask R-CNN R101 SyncBN FPN模型训练

本文介绍了基于Mask R-CNN R101 SyncBN FPN模型的服装图像风格识别与分类方法。该方法通过两阶段检测策略实现服装检测、分割和分类,采用ResNet-101骨干网络、同步批量归一化和特征金字塔网络提升性能。文章详细阐述了数据集构建、数据预处理(包括图像调整和增强)、模型配置与训练过程,并讨论了云端、边缘和移动端等不同部署方案。实验结果表明,该方法能有效识别服装类别、位置和轮廓,具有较高的实用价值。随着深度学习发展,服装检测技术将朝着轻量化、多模态融合方向发展,与AR/VR等技术结合创造更多

2025-11-21 12:19:55 27

原创 民间绘画图像识别_YOLO11实现老虎_蝴蝶_花卉_莲花_牡丹和书套分类

摘要 本文提出基于改进YOLO11算法的民间绘画图像识别方法,实现对老虎、蝴蝶、花卉、莲花、牡丹和书套等典型元素的分类检测。针对民间绘画背景复杂、元素多样等特点,创新性地引入DPCF模块增强多尺度特征融合能力,并结合轻量化设计降低模型复杂度。实验表明,改进后的YOLO11在自建数据集(6类×500张)上达到86.8% mAP,参数量减少26%至18.7M。该方法为文化遗产数字化保护提供有效技术方案,在艺术教育和文化旅游领域具有应用潜力。代码与数据集已开源。(149字)

2025-11-19 14:47:26 561

原创 洪水区域检测与房屋受灾评估:基于YOLOv10n-StarNet-BiFPN的遥感图像分析方法

本文提出了一种基于改进YOLOv10n-StarNet-BiFPN的洪水检测与房屋受灾评估方法。该方法通过改进YOLOv10n模型增强洪水检测能力(F1分数0.893),采用StarNet实现房屋受损分级(mIoU 0.851),并利用BiFPN融合多尺度特征提升12%性能。实验在FloodNet数据集上验证了该方法的有效性,处理速度达12.3帧/秒,比传统方法快40%。实际应用中可在15分钟内完成500平方公里区域的灾情评估,为应急救援提供实时决策支持。

2025-11-19 14:19:52 529

原创 ASAP如何更好地改进少样本提示在LLMs的prompt中添加语义信息来提高代码摘要生成代码补全

本文探讨了如何通过添加语义信息改进大型语言模型(LLM)在代码摘要任务中的性能。研究提出自动语义提示增强(ASAP)方法,通过在提示中融入静态分析生成的语义信息(如存储库路径、标识符标记、数据流图等),显著提升了模型的少样本学习能力。实验表明,该方法在CodeSearchNet等数据集上表现优异,部分语言BLEU值提升超过30点。文章还分析了不同提示工程策略(如零样本、少样本、思维链提示)的效果,并讨论了模型的局限性。这项研究为优化LLM在软件工程任务中的应用提供了新思路。

2025-10-11 10:15:46 264

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除