transaction transaction transaction
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 132768/132768 K (Java/Others)Total Submission(s): 98 Accepted Submission(s): 42
Problem Description
Kelukin is a businessman. Every day, he travels around cities to do some business. On August 17th, in memory of a great man, citizens will read a book named "the Man Who Changed China". Of course, Kelukin wouldn't miss this chance to make money, but he doesn't have this book. So he has to choose two city to buy and sell.
As we know, the price of this book was different in each city. It is ai yuan in i t city. Kelukin will take taxi, whose price is 1 yuan per km and this fare cannot be ignored.
There are n−1 roads connecting n cities. Kelukin can choose any city to start his travel. He want to know the maximum money he can get.
As we know, the price of this book was different in each city. It is ai yuan in i t city. Kelukin will take taxi, whose price is 1 yuan per km and this fare cannot be ignored.
There are n−1 roads connecting n cities. Kelukin can choose any city to start his travel. He want to know the maximum money he can get.
Input
The first line contains an integer
T
(
1≤T≤10
) , the number of test cases.
For each test case:
first line contains an integer n ( 2≤n≤100000 ) means the number of cities;
second line contains n numbers, the i th number means the prices in i th city; (1≤Price≤10000)
then follows n−1 lines, each contains three numbers x , y and z which means there exists a road between x and y , the distance is z km (1≤z≤1000) .
For each test case:
first line contains an integer n ( 2≤n≤100000 ) means the number of cities;
second line contains n numbers, the i th number means the prices in i th city; (1≤Price≤10000)
then follows n−1 lines, each contains three numbers x , y and z which means there exists a road between x and y , the distance is z km (1≤z≤1000) .
Output
For each test case, output a single number in a line: the maximum money he can get.
Sample Input
1 4 10 40 15 30 1 2 30 1 3 2 3 4 10
Sample Output
8
Source
这题第一反应就是用spfa,可是比赛的时候就想着跑N次,然后再嵌套循环去求最大收入,但是明显会TLE.....
比赛后看别人的才发现可以直接跑N次spfa,然后最大收入重新写一个循环,因为最大值是会被不断替换的,不管根节点是谁,最大值都是确定的。
本来以为这样就对了,后面又发现树形dp更方便解决。很厉害。
费用流AC代码
#include <cstdio> #include <cstdlib> #include <cstring> #include <cmath> #include <algorithm> using namespace std; const int MaxN = 200000; int n, m, all; int pre[MaxN + 5], last[MaxN + 5], other[MaxN + 5], cost[MaxN + 5]; int dis[MaxN + 5], seq[MaxN + 5],w[MaxN + 5]; bool Inque[MaxN + 5]; void Build(int x, int y, int w) { pre[++all] = last[x]; last[x] = all; other[all] = y; cost[all] = w; } void Bfs(int s) { int head = 1, tail = 1, now, ed, dr; seq[tail] = s; Inque[s] = 1; while(head <= tail) { now = seq[head]; ed = last[now]; while(ed != -1) { dr = other[ed]; if(dis[now] - w[now] - cost[ed] + w[dr] > dis[dr]) { dis[dr] = dis[now] - cost[ed] - w[now] + w[dr]; if(!Inque[dr]) { Inque[dr] = 1; seq[++tail] = dr; } } ed = pre[ed]; } Inque[now] = 0; head++; } } int main() { int t; scanf("%d",&t); while (t--) { all = -1; memset(last, -1, sizeof(last)); memset(w,0,sizeof(w)); memset(dis,0,sizeof(dis)); scanf("%d", &n); for (int i = 1; i <= n; i++) scanf("%d",&w[i]); for(int i = 1; i <= n-1; i++) { int a, b, w; scanf("%d%d%d", &a, &b, &w); Build(a, b, w); Build(b, a, w); } memset(seq, 0, sizeof(seq)); memset(Inque, 0, sizeof(Inque)); int Max = 0; for (int i = 1; i <= n; i++) { Bfs(i); } for (int i = 1; i <= n; i++) { Max = max(Max,dis[i]); } printf("%d\n",Max); } }