注意:若无特殊声明,字母代表的均为正整数,下标不同的质数互不相同, 默认为质数。
前言:
由于蒟蒻在学习欧拉函数时,想要证明其为积性函数。但是在网上只找到了使用中国剩余定理的证明(并且由于蒟蒻太弱,看不懂)和一些用容斥原理但讲解模糊的证明(甚至还有拿欧拉函数计算公式来循环论证的证明),所以打算用数学归纳法进行证明。因此,本文证明的重点在下文的结论四。同时,由于蒟蒻还是初三学生,若出现伪证,望大佬们指正。
结论一
若 为质数,则
。(定义证明显然)
结论二
若 为质数,则
。
证明:
到
中共有
个数是
的倍数,其它数均与
互质。
。
结论三
若 为互异的质数,则
。
证明:
为互异的质数。
,
到
中共有
个数与
不互质(
是因为
被重复计算,思路同结论 2 证明)。
。
结论四(一个很强的结论)
若 为互异的质数,则
。
原命题:
证明:
为互异的质数。
,
在 到
中,是
的倍数的数有
个,是
的倍数的数有
个,是
的倍数的数有
个,根据容斥原理,与
不互质的数有
个。
。
推广:
事实上,这个结论可以推广到任意项,考虑如下证明:
<1>两项时,已证明命题成立。
<2>若 n 项时成立,则对于 ,
令 ,
,则
到
中与 A 不互质的数的个数为
个,与 B 不互质的数的个数为 个,对于前者包含的数,凡是含有因子
的,
都被重复计算了,共有 个,故与 m 不互质的数有
个,
则 ,即对于 n+1 项时仍成立。
<3>由数学归纳法知,此结论对于任意项都成立。
补充说明:
一:
对于 的由来,我们不能考虑乘法,应当考虑加法并结合辗转相除法:
若 ,则
,
若 ,则
,
的由来同理。
二:
对于 的由来,我们需要进一步考虑。
首先证明一个引理:在模 的前提下,
互不相等。
考虑反证,假设 ,
由于 ,
,违反互异的假设,矛盾。
故引理得证。
考虑 ,则基于
产生的数一定可以写为如下形式:
,
则对于一个固定的 ,每一个
的取值都有且仅有一个
使
,
故重复计算的数的个数为 。
结论五
若 ,则
。
证明(应用上述结论 4):
由唯一分解定理(p,q 为素数):
,
根据 知
,有
。故:
。
因此,欧拉函数是积性函数。
结论六
对于 ,
。
证明(应用上述的结论 2,4):
。
结论七
若 为质数,且
,
。(应用上述结论 6 易证)
结论八
。
证明:根据唯一分解定理设:,
首先证明:
,
即对于 时成立。下证原结论:
。