欧拉函数相关证明(容斥原理证积性函数)

注意:若无特殊声明,字母代表的均为正整数,下标不同的质数互不相同,p,q 默认为质数。

前言:

由于蒟蒻在学习欧拉函数时,想要证明其为积性函数。但是在网上只找到了使用中国剩余定理的证明(并且由于蒟蒻太弱,看不懂)和一些用容斥原理但讲解模糊的证明(甚至还有拿欧拉函数计算公式来循环论证的证明),所以打算用数学归纳法进行证明。因此,本文证明的重点在下文的结论四。同时,由于蒟蒻还是初三学生,若出现伪证,望大佬们指正。

结论一

n 为质数,则 \varphi (n)=n-1。(定义证明显然)

结论二

p 为质数,则 \varphi (p^k)=(p-1)\times p^{k-1}

证明:

\because 1 到 p^k 中共有 p^{k-1} 个数是 p 的倍数,其它数均与 p^k 互质。

\therefore \varphi (p^k)=p^k-p^{k-1}=(p-1)\times p^{k-1}    。

结论三

p,q 为互异的质数,则 \varphi (pq)=\varphi (p)\times \varphi (q)

证明:

\because p,q 为互异的质数。

\therefore \varphi (p)=p-1,\varphi (q)=q-11 到 pq 中共有 p+q-1 个数与 pq 不互质-1 是因为 pq 被重复计算,思路同结论 2 证明)。

\therefore \varphi (pq)=pq-p-q+1=\varphi (p)\times \varphi (q)

结论四(一个很强的结论)

p,q 为互异的质数,则 \varphi (p^aq^b)=\varphi (p^a)\times \varphi (q^b)

原命题:

证明:

\because p,q 为互异的质数。

\therefore \varphi (p^a)=(p-1)\times p^{a-1},\varphi (q^b)=(q-1)\times q^{b-1}

在 1 到 p^aq^b 中,是 p 的倍数的数有 p^{a-1}q^b 个,是 q 的倍数的数有 p^aq^{b-1} 个,是 pq 的倍数的数有 p^{a-1}q^{b-1} 个,根据容斥原理,与 p^aq^b 不互质的数有 (p+q-1)p^{a-1}q^{b-1} 个。

\begin{aligned} \therefore \varphi (p^aq^b) &= p^aq^b-(p+q-1)p^{a-1}q^{b-1}\\ &= (p-1)\times (q-1)\times p^{a-1}q^{b-1}\\ &=\varphi (p^a)\times \varphi (q^b) \end{aligned}

推广:

事实上,这个结论可以推广到任意项,考虑如下证明:

<1>两项时,已证明命题成立。

<2>若 n 项时成立,则对于 m=\prod_{i=1}^{n+1}p_i^{a_i} ,

令 A=\prod_{i=1}^{n}p_i^{a_i}, B=p_{n+1}^{a_{n+1}},则 1 到 m 中与 A 不互质的数的个数为 (A-\varphi (A))\times B

 个,与 B 不互质的数的个数为 p_{n+1}^{a_{n+1}-1}\times A 个,对于前者包含的数,凡是含有因子 p_{n+1} 的,

都被重复计算了,共有 p_{n+1}^{a_{n+1}-1}\times (A-\varphi (A)) 个,故与 m 不互质的数有 

m-B\times \varphi (A)+\frac{B}{p_{n+1}}\times \varphi (A) 个,

则 \varphi (m)=B\times \varphi (A)-\frac{B}{p_{n+1}}\times \varphi (A)=\varphi (A)\times \varphi (B),即对于 n+1 项时仍成立。

<3>由数学归纳法知,此结论对于任意项都成立。

补充说明:

一:

对于 (A-\varphi (A))\times B 的由来,我们不能考虑乘法,应当考虑加法并结合辗转相除法:

若 a\leq A,\gcd(a,A)>1,则 \gcd(kA+a,A)=\gcd(a,A)>1

若 a\leq A,\gcd(a,A)=1,则 \gcd(kA+a,A)=\gcd(a,A)=1

p_{n+1}^{a_{n+1}-1}\times A 的由来同理。

二:

对于 p_{n+1}^{a_{n+1}-1}\times (A-\varphi (A)) 的由来,我们需要进一步考虑。

首先证明一个引理在模 p_{n+1} 的前提下bA(1\leq b\leq p_{n+1}) 互不相等。

考虑反证,假设 \exists b_1,b_2\leq k \text{ and } b_1\ne b_2 ,b_1A\equiv b_2A(\mod p_{n+1})

由于 \gcd(A,p_{n+1})=1

(b_1-b_2)A\equiv 0(\mod p_{n+1})\Rightarrow b_1-b_2\equiv 0(\mod p_{n+1}),违反互异的假设,矛盾。

引理得证。

考虑 a\leq A,\gcd(a,A)>1,则基于 a 产生的数一定可以写为如下形式:

z=(xp_{n+1}+y)A+a(0\leq y< p_{n+1},0\leq x<p_{n+1}^{a_{n+1}-1}))

则对于一个固定的 a,每一个 x 的取值都有且仅有一个 y 使 p_{n+1}\mid z

故重复计算的数的个数为 p_{n+1}^{a_{n+1}-1}\times (A-\varphi (A))

结论五

若 \gcd(m,n)=1,则 \varphi (mn)=\varphi (m)\times \varphi (n)

证明(应用上述结论 4):

由唯一分解定理(p,q 为素数):

m=\displaystyle\prod_{i=1}^{k_1}p_i^{a_i},n=\displaystyle\prod_{i=1}^{k_2}q_i^{b_i}

根据 \gcd(n,m)=1 知 \forall i\leq k_1, j\leq k_2,有 p_i\ne q_j。故:

 \begin{aligned} \varphi (nm)&=\varphi (\prod_{i=1}^{k_1}p_i^{a_i}\prod_{i=1}^{k_2}q_i^{b_i})\\ &=\prod_{i=1}^{k_1}\varphi (p_i^{a_i})\times \prod_{i=1}^{k_2}\varphi (q_i^{b_i})\\ &=\varphi (\prod_{i=1}^{k_1}p_i^{a_i})\times \varphi (\prod_{i=1}^{k_2}q_i^{b_i})\\ &=\varphi (m)\times \varphi (n) \end{aligned}

因此,欧拉函数是积性函数。

结论六

对于 n=\prod_{i=1}^{k}p_i^{a_i}(\varphi (p_i)=p_i-1)\varphi (n)=n\times \prod_{i=1}^{k} \frac{p_i-1}{p_i}

证明(应用上述的结论 2,4):

\begin{aligned} \varphi (n) &=\varphi (\prod_{i=1}^{k}p_i^{a_i}) \\ &=\prod_{i=1}^{k}\varphi (p_i^{a_i})\\ &=\prod_{i=1}^{k=1}(p_i-1)\prod_{i=1}^{k}p_i^{a_i-1}\\ &=n\times \prod_{i=1}^{k} \frac{p_i-1}{p_i} \end{aligned}

结论七

p 为质数,且 p \mid n\varphi (np)=\varphi (n)\times p(应用上述结论 6 易证)

结论八

 \sum_{d \mid n} \varphi (d)=n

证明:根据唯一分解定理设:n=\prod_{i=1}^{k}p_i^{a_i}

首先证明:

\begin{aligned} \sum_{i=0}^{k}\varphi (p^i)&=1+\sum_{i=1}^{k}(p^i-p^{i-1})\\ &=p^k \end{aligned}

即对于 k=1 时成立。下证原结论:

\begin{aligned} \sum_{d \mid n} \varphi (d) &=\sum_{b_1=0}^{a_1}\sum_{b_2=0}^{a_2}\text{......}\sum_{b_k=0}^{a_k} \varphi (\prod_{i=1}^{k}p_i^{b_i})\\ &=\sum_{b_1=0}^{a_1}\sum_{b_2=0}^{a_2}\text{......}\sum_{b_k=0}^{a_k} \prod_{i=1}^{k}\varphi (p_i^{b_i})\\ &=\sum_{b_1=0}^{a_1}\varphi (p_1^{b_1}) \sum_{b_2=0}^{a_2}\varphi (p_2^{b_2})\text{......}\sum_{b_k=0}^{a_k} \varphi (p_k^{b_k}) \\ &=\prod_{i=1}^{k}p_i^{a_i}\\ &=n \end{aligned}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值