代码随想录算法训练营第三十一天|455.分发饼干、376. 摆动序列、53. 最大子数组和

455.分发饼干

题目描述

题目链接:力扣455.分发饼干

假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。

对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j] 。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。

思路

将数组g和s从小到大排序,依次比较,将第一个尺寸值大于当前小孩的胃口值的饼干分配给他,遍历完成即可。

代码实现

class Solution {
public:
    int findContentChildren(vector<int>& g, vector<int>& s) {
        sort(g.begin(), g.end());
        sort(s.begin(), s.end());
        int m = g.size(), n = s.size();
        int count = 0;
        for (int i = 0, j = 0; i < m && j < n; i++, j++) {
            while (j < n && g[i] > s[j]) {
                j++;
            }
            if (j < n) {
                count++;
            }
        }
        return count;
    }
};

376.摆动序列

题目描述

题目链接:力扣376.摆动序列

如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为 摆动序列 。第一个差(如果存在的话)可能是正数或负数。仅有一个元素或者含两个不等元素的序列也视作摆动序列。

  • 例如, [1, 7, 4, 9, 2, 5] 是一个 摆动序列 ,因为差值 (6, -3, 5, -7, 3) 是正负交替出现的。

  • 相反,[1, 4, 7, 2, 5] 和 [1, 7, 4, 5, 5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。

子序列 可以通过从原始序列中删除一些(也可以不删除)元素来获得,剩下的元素保持其原始顺序。

给你一个整数数组 nums ,返回 nums 中作为 摆动序列 的 最长子序列的长度 。

思路

观察这个序列可以发现,我们不断地交错选择「峰」与「谷」,可以使得该序列尽可能长。证明非常简单:如果我们选择了一个「过渡元素」,那么在原序列中,这个「过渡元素」的两侧有一个「峰」和一个「谷」。不失一般性,我们假设在原序列中的出现顺序为「峰」「过渡元素」「谷」。如果「过渡元素」在选择的序列中小于其两侧的元素,那么「谷」一定没有在选择的序列中出现,我们可以将「过渡元素」替换成「谷」;同理,如果「过渡元素」在选择的序列中大于其两侧的元素,那么「峰」一定没有在选择的序列中出现,我们可以将「过渡元素」替换成「峰」。这样一来,我们总可以将任意满足要求的序列中的所有「过渡元素」替换成「峰」或「谷」。并且由于我们不断地交错选择「峰」与「谷」的方法就可以满足要求,因此这种选择方法就一定可以达到可选元素数量的最大值。

这样,我们只需要统计该序列中「峰」与「谷」的数量即可(注意序列两端的数也是「峰」或「谷」),但需要注意处理相邻的相同元素。

在实际代码中,我们记录当前序列的上升下降趋势。每次加入一个新元素时,用新的上升下降趋势与之前对比,如果出现了「峰」或「谷」,答案加一,并更新当前序列的上升下降趋势。

代码实现

class Solution {
public:
    int wiggleMaxLength(vector<int>& nums) {
        int n = nums.size();
        if (n < 2) {
            return n;
        }
        int prevdiff = nums[1] - nums[0];
        int ret = prevdiff != 0 ? 2 : 1;
        for (int i = 2; i < n; i++) {
            int diff = nums[i] - nums[i - 1];
            if ((diff > 0 && prevdiff <= 0) || (diff < 0 && prevdiff >= 0)) {
                ret++;
                prevdiff = diff;
            }
        }
        return ret;
    }
};

53.最大子序和

题目描述

题目链接:力扣53.最大子数组和

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

子数组 是数组中的一个连续部分。

思路

贪心,对这个数组从头累加,并使用一个变量记录当前最大值。若遇到正数就累加并更新当前最大值,若遇到负数就从0累加。最终可得到正确结果。

代码实现

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        if(nums.size() == 0) return 0;
        if(nums.size() == 1) return nums[0];
        int a = nums[0], res = nums[0];
        for(int i=1; i<nums.size(); i++){
            a = max(nums[i], a + nums[i]);
            res = max(res, a);
        }
        return res;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值