1.洛谷P1412 经营与开发
你驾驶着一台带有钻头(初始能力值w)的飞船,按既定路线依次飞过n个星球。
星球笼统的分为2类:资源型和维修型。(p为钻头当前能力值)
1.资源型:含矿物质量a[i],若选择开采,则得到a[i]*p的金钱,之后钻头损耗k%,即p=p*(1-0.01k)
2.维修型:维护费用b[i],若选择维修,则支付b[i]*p的金钱,之后钻头修复c%,即p=p*(1+0.01c)
注:维修后钻头的能力值可以超过初始值(你可以认为是翻修+升级)
金钱可以透支。
请作为舰长的你仔细抉择以最大化收入。
第一行4个整数n,k,c,w。
以下n行,每行2个整数type,x。
type为1则代表其为资源型星球,x为其矿物质含量a[i];
type为2则代表其为维修型星球,x为其维护费用b[i];
输出格式:
一个实数(保留2位小数),表示最大的收入。
输入输出样例
输入样例#1:
5 50 50 10
1 10
1 20
2 10
2 20
1 30
输出样例#1:
375.00
说明
【数据范围】
对于30%的数据 n<=100
另有20%的数据 n<=1000;k=100
对于100%的数据 n<=100000; 0<=k,c,w,a[i],b[i]<=100;保证答案不超过10^9
一般的dp都是从1~n,但是这道题目不一样是从n~1的逆推,非常难想。
首先我们可以发现当前的选择会对后面的数据造成影响所以需要逆推。
假设最后一点为P=1;
则 开采:dp[n-1]=max(dp[n],a[n-1]+dp[n]*(1-0.01k));及开采后后面所有的收益都减少k%
维修:dp[n-1]=max(dp[n],-a[n]+dp[n]*(1-0.01c));及维修后后面的所以收益都增加c%
最后记住要乘w,因为所以的操作都是建立在取百分比基础上的,所以可以直接乘。
这里是大佬的解释:
设结果ans=w*k1*a1+w*k1*k2*a2+w*k1*k2*k3*a3+w*k1*k2*k3*k4*a4,即ans=w*(k1*a1+k1*k2*a2+k1*k2*k3*a3+k1*k2*k3*a4),进一步提公因式就是ans=w*(k1*(a[1]+k2*(a[2]+k3*(a[3]+k4*a[4]))))
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
int n, f[100005], a[100005];
double c, k, w, dp[100005];
int main(){
cin>>n>>k>>c>>w;
for(int i=1; i<=n; i++)
scanf("%d %d", &f[i], &a[i]);
for(int i=n; i>=1; i--){
if(f[i]==1) dp[i] = max(dp[i+1], a[i]+dp[i+1]*(1-0.01*k));
else dp[i] = max(dp[i+1], -a[i]+dp[i+1]*(1+0.01*c));
}
printf("%.2lf", dp[1]*w);
return 0;
}