在N*N的方格棋盘放置了N个皇后,使得它们不相互攻击(即任意2个皇后不允许处在同一排,同一列,也不允许处在与棋盘边框成45角的斜线上。
你的任务是,对于给定的N,求出有多少种合法的放置方法。
Input
共有若干行,每行一个正整数N≤10,表示棋盘和皇后的数量;如果N=0,表示结束。
Output
共有若干行,每行一个正整数,表示对应输入行的皇后的不同放置数量。
Sample Input
1
8
5
0
Sample Output
1
92
10
N皇后问题比较经典了,在紫书上也有讲,但是交上去总是TLE,后来发现是记录上出了问题,在计算答案之前先循环计算1-10的答案并记录在一个数组中,输入n之后直接调用数组答案输出即可
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<cstdio>
#include<queue>
using namespace std;
int tot, n, c[11];
void search_(int cur, int k)
{
if(cur == k)
tot++;
else{
for(int i = 0; i < k; i++){
int ok = 1;
c[cur] = i;
for(int j = 0; j < cur; j++)
{
if(c[cur] == c[j] || cur - c[cur] == j - c[j] || cur + c[cur] == j + c[j])
{
ok = 0;
break;
}
}
if(ok)
search_(cur + 1, k);
}
}
}
int main()
{
int oldAns[11];
memset(oldAns, 0, sizeof(oldAns));
for(int i = 0; i <= 10; i++)
{
tot = 0;
search_(0, i);
oldAns[i] = tot;
}
while(scanf("%d", &n) != EOF && n)
{
cout<<oldAns[n]<<endl;
}
return 0;
}