百面深度学习学习心得----第一章

本文解析了卷积神经网络中的关键概念和技术,包括卷积层与全连接层的区别、感受野的计算方法、卷积的多种变种形式及其应用场景,并介绍了可变形卷积的作用,同时探讨了批归一化在训练中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 卷积层与全连接层的区别,

简单来说就是卷积层参数比全连接层参数少,拥有局部连接和参数共享的特性。

2 如何在卷积神经网络中计算感受野的大小

简单的理解就是上一次的卷积核的大小,一次步长的移动范围就是下一层卷积层的感受野大小,例如上一层的卷积核大小为3X3,步长为1,那么下一层的感受野就是5X5。

3 卷积的变种

分组卷积:将输入通道和输出通道划分为同样的组数,让组数相同的进行全连接。

转置卷积:就是用于上采样,与普通卷积相反。

空洞卷积:在标准的卷积中加入了空洞(0),以增加卷积核的感受野。

4 可变形卷积可以解决哪些问题

可以端到端的学习几何形变的偏移量,会根据物体的形状,尺寸进行自适应调整。

5 卷积神经网络的发展

Alexnet VGGnet inceptionnet resnet

6 批归一化为了解决什么问题,参数有何意义,一般放在网络什么位置。

确保网络中的各层.即使参数发生了变化,其输入 到输出 的分布也不
能产生较大变化,从而避免发生内部协变量偏移现象 采用批 归一化后
卷积神经网络的训练过程更加 l迅速,   可以采用 较大的学习率加速收敛
平移参数与缩放参数:保留每一层的学习成果。
近几年批归一化层一般放在激活层的后面。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值