1 卷积层与全连接层的区别,
简单来说就是卷积层参数比全连接层参数少,拥有局部连接和参数共享的特性。
2 如何在卷积神经网络中计算感受野的大小
简单的理解就是上一次的卷积核的大小,一次步长的移动范围就是下一层卷积层的感受野大小,例如上一层的卷积核大小为3X3,步长为1,那么下一层的感受野就是5X5。
3 卷积的变种
分组卷积:将输入通道和输出通道划分为同样的组数,让组数相同的进行全连接。
转置卷积:就是用于上采样,与普通卷积相反。
空洞卷积:在标准的卷积中加入了空洞(0),以增加卷积核的感受野。
4 可变形卷积可以解决哪些问题
可以端到端的学习几何形变的偏移量,会根据物体的形状,尺寸进行自适应调整。
5 卷积神经网络的发展
Alexnet VGGnet inceptionnet resnet
6 批归一化为了解决什么问题,参数有何意义,一般放在网络什么位置。
确保网络中的各层.即使参数发生了变化,其输入 到输出
的分布也不
能产生较大变化,从而避免发生内部协变量偏移现象
采用批
归一化后
卷积神经网络的训练过程更加
l迅速,
可以采用 较大的学习率加速收敛
平移参数与缩放参数:保留每一层的学习成果。
近几年批归一化层一般放在激活层的后面。