自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(13)
  • 收藏
  • 关注

转载 bp神经网络及matlab实现

3>由于神经网络输出层的激活函数的值域是有限制的,因此需要将网络训练的目标数据映射到激活函数的值域。例如神经网络的输出层若采用S形激活函数,由于S形函数的值域限制在(0,1),也就是说神经网络的输出只能限制在(0,1),所以训练数据的输出就要归一化到[0,1]区间。上式将数据归一化到 [ 0 , 1 ]区间,当激活函数采用S形函数时(值域为(0,1))时这条式子适用。数据归一化,就是将数据映射到[0,1]或[-1,1]区间或更小的区间,比如(0.1,0.9)。一种简单而快速的归一化算法是线性转换算法。

2023-05-07 14:37:55 279

转载 matlab-模拟退火算法

1.由产生函数,由当前解产生位于解空间的新解。注意,产生新解的方式决定了新解的领域结构,因而对冷却进度表选取有影响。由初始解 i 和控制参数初值 t 开始,对当前解重复 “产生新解、计算目标函数差、接收或舍弃”的迭代。4.新解被确定接受后用新解代替当前解,将当前解中对应于产生新解是的变换部分实现,再修正目标函数值。3.判断新解是否被接受。%%%%先计算各个粒子的适应度,初始化pi和pg %%%%%%%%%%%%%%%主循环,按公式以此迭代%%%%%%%%%%%%%%%%初始化种族的个体%%%%%%%

2023-05-06 01:24:38 316

转载 测试不同隐藏层神经元的个数、更改学习函数

建立前向型BP网络,输入层和隐藏层激励函数为tansig, 输出层为purelin。%建立前向型BP网络,输入层和隐藏层激励函数为tansig, 输出层为purelin。注意网络仿真曲线,'r+' 是网络仿真,'——'是目标曲线。注意网络仿真曲线,'r+' 是网络仿真,'——'是目标曲线。注意网络仿真曲线,'r+' 是网络仿真,'——'是目标曲线。注意网络仿真曲线,'r+' 是网络仿真,'——'是目标曲线。注意网络仿真曲线,'r+' 是网络仿真,'——'是目标曲线。

2023-05-06 01:22:58 221

转载 python画图

在这里,position位置参数有三种,这里用到了“按Y轴刻度位置挪动”,'data’表示按数值挪动,其后数字代表挪动到Y轴的刻度值。如何使用Python创建多个画板和画纸来绘制多幅图,如果事先不声明画板画板,处理哪个figure,则选择哪个figure,再进行画图。设置x轴的范围为[a, b],y轴的范围为[c, d]函数则用来实现,在一个大图中,出现多个小的子图。就是根据数组和函数进行绘图,和上面没什么区别。获取底部的轴,获取哪个轴,则参数中写哪个。要挪动底部的X轴,所以先目光锁定底部。

2023-03-22 22:17:51 2089

转载 LOSS曲线问题(1)

1)batch数太小,而类别又比较多的时候,可能会导致loss函数震荡而不收敛,尤其是在你的网络比较复杂的时候。1:数据输入不对包括数据的格式不是网络模型指定的格式,导致训练的时候网络学习的数据不是想要的;2. batch的选择,首先决定的是下降方向,如果数据集比较小,则完全可以采用全数据集的形式。这样做的好处有两点,4)由于上述两种因素的矛盾, Batch_Size 增大到某个时候,达到时间上的最优。1:当脚本中的train.bin的路径或者模型参数的路径配置不对时,会导致训练模型结果不对.

2023-02-19 09:35:09 1028

原创 loss.backward() 和optimizer.step()的关系及灵活运用

loss.backward() 和optimizer.step()的关系及灵活运用

2022-12-10 08:41:16 1098

原创 PyTorch——L2范数正则化(权重衰减)

L2正则化

2022-12-10 08:39:15 570

原创 运行import一个包的时候出现:module = self._system_import(name, *args, **kwargs)

pycharm加载pip后的包无法运行的解决办法

2022-08-24 20:22:06 827

原创 似然与概率的联系

链接:https://www.zhihu.com/question/54082000/answer/145495695似然与概率的联系先看似然函数的定义,它是给定联合样本值下关于(未知)参数 的函数:这里的小x是指联合样本随机变量X取到的值,即X=x;这里的是指未知参数,它属与参数空间;这里的是一个密度函数,特别地,它表示(给定)下关于联合样本值X的联合密度函数。所以从定义上,似然函数和密度函数是完全不同的两个数学对象:前者是关于的函数,后者是关于的函数。...

2022-03-25 11:52:59 1100

转载 多元高斯似然

这些算法学习回归,这些回归被构建为基函数的加权线性组合;在存在训练数据的情况下估计权重。在许多这些算法中,允许的基函数集是不受限制的;例如,它们可能是它们本身的原始特征,这些特征的一些非线性变换,甚至是以训练样本为中心的内核。...

2022-03-25 10:28:22 157

原创 稀疏模型构建

1、为欠定线性系统寻找稀疏解决方案是各种领域和应用中的一个基本问题,例如网络系统 (Haupt et al., 2008)、材料科学 (Szameit et al., 2012)、医学成像 (Lustig et al., ., 2007) 等等。该问题可以形式化为其中 Φ ∈ 是一个列数可能多于行数的矩阵,y 是我们尝试使用未知稀疏向量X表示的观察结果,代表 X中非零元素的数量。Φ 的一列 φi 是不同地称为特征或原子。2、稀疏贝叶斯学习 (SBL) 和逐步回归。(1)SB...

2022-03-22 16:32:07 2289

翻译 信号去噪:使用专门设计的神经网络(NN)模型对测量信号进行去噪处理,使信号变得更平滑

信号预处理为了对测量数据进行预处理,构建了一个全连接的前馈 NN 模型以将系统输入(即x 和 t)映射到其输出 u。图显示了用于去噪的 NN 模型的结构。它在输入层和输出层之间有五个隐藏层,神经元的数量分别为 50、100、500、100 和 50。该模型使用双曲正切激活函数(即 Tanh 函数)。建立均方误差 (MSE) 损失函数来评估测量和模型输出之间的差异。 Adam 优化器用于训练该模型,学习率设置为 0.001。 epochs 的数量设置为 20000。此外,在 NN 模型训练中采..

2022-03-21 09:01:14 2764

原创 PINN(Python通过递归神经网络直接实现常微分方程积分)

Python构建PINN:(1)加载工具包;(2)搭建基于物理定律的模型结构;(3)将数据驱动内核与基于物理的内核耦合(PINN);(4)搭建神经网络;(5)使用训练好的神经网络预测(1)、加载工具包import pandas as pd #用于数据导入和操作的pandasimport numpy as np #用于数据导入和操作的numpyimport matplotlib.pyplot as plt#专门化模型from tensorflow.keras.layers ...

2022-01-09 16:21:02 6884 6

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除