51Nod 1060 最复杂的数

把一个数的约数个数定义为该数的复杂程度,给出一个n,求1-n中复杂程度最高的那个数。
例如:12的约数为:1 2 3 4 6 12,共6个数,所以12的复杂程度是6。如果有多个数复杂度相等,输出最小的。
Input
第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 100)
第2 - T + 1行:T个数,表示需要计算的n。(1 <= n <= 10^18)
OutPut
共T行,每行2个数用空格分开,第1个数是答案,第2个数是约数的数量。
Input示例
5
1
10
100
1000
10000
Output示例
1 1
6 4
60 12
840 32
7560 64
 
  
解题思路:寻找该区间内最大的反素数即为答案。
反素数具有两个性质
(1)反素数为从2开始的连续的素数幂的乘积
(2)假设x=p1^a1*p2^a2*p3^a3....,则肯定满足p1>=p2>=p3
我们可以利用上述两条性质利用dfs+剪枝来搜索。
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <string>
#include <vector>
#include <deque>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <utility>
#include <algorithm>
#include <functional>
using namespace std;

/*
    反素数的性质:
    (1) 一个反素数的质因子必然是从2开始连续的质数
    (2) p=2^t1*3^t2*5^t3*7^t4...,必然t1>=t2>=t3....
*/

typedef unsigned long long ull;
const ull inf = 0x3f3f3f3f3f3f3f3fLL;
int prime[20] = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59 };
ull n;
ull ans;
ull maxnum;
int T;

void dfs(int pos, int lim, ull cur, ull num) {
    if(pos > 15) return ;
    if(cur > n) return ;
    if(num > maxnum) {
        maxnum = num;
        ans = cur;
    }
    if(num == maxnum && cur < ans) {
        ans = cur;
    }
    for(int i = 1; i <= lim; ++i) {
        if(n / prime[pos] < cur) break;
        dfs(pos + 1, i, cur * prime[pos], num * (i + 1));
        cur *= prime[pos];
    }
    return ;
}

int main() {

    cin >> T;
    while(T--) {
        cin >> n;
        maxnum = 0;
        ans = inf;
        dfs(0, 60, 1, 1);
        cout << ans << " " << maxnum << endl;
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值