Codeforces 598E Chocolate Bar

本文介绍了一种使用动态规划解决特定巧克力分割问题的方法。该问题要求将一块n×m的矩形巧克力分割成若干块,以吃到指定数量的巧克力方块,同时使分割成本最小。文章详细解释了如何通过三维DP数组来存储中间结果,进而求得最终答案。
摘要由CSDN通过智能技术生成

You have a rectangular chocolate bar consisting of n × m single squares. You want to eat exactly k squares, so you may need to break the chocolate bar.

In one move you can break any single rectangular piece of chocolate in two rectangular pieces. You can break only by lines between squares: horizontally or vertically. The cost of breaking is equal to square of the break length.

For example, if you have a chocolate bar consisting of 2 × 3 unit squares then you can break it horizontally and get two 1 × 3 pieces (the cost of such breaking is 32 = 9), or you can break it vertically in two ways and get two pieces: 2 × 1 and 2 × 2 (the cost of such breaking is 22 = 4).

For several given values n, m and k find the minimum total cost of breaking. You can eat exactly k squares of chocolate if after all operations of breaking there is a set of rectangular pieces of chocolate with the total size equal to k squares. The remaining n·m - k squares are not necessarily form a single rectangular piece.

Input
The first line of the input contains a single integer t (1 ≤ t ≤ 40910) — the number of values n, m and k to process.

Each of the next t lines contains three integers n, m and k (1 ≤ n, m ≤ 30, 1 ≤ k ≤ min(n·m, 50)) — the dimensions of the chocolate bar and the number of squares you want to eat respectively.

Output
For each n, m and k print the minimum total cost needed to break the chocolate bar, in order to make it possible to eat exactly k squares.

Sample test(s)
input
4
2 2 1
2 2 3
2 2 2
2 2 4
output
5
5
4
0
Note
In the first query of the sample one needs to perform two breaks:

to split 2 × 2 bar into two pieces of 2 × 1 (cost is 22 = 4),
to split the resulting 2 × 1 into two 1 × 1 pieces (cost is 12 = 1).
In the second query of the sample one wants to eat 3 unit squares. One can use exactly the same strategy as in the first query of the sample.

解题思路:按照题目的意思进行DP即可。
dp[i][j][k]表示长为i宽为j组合成k需要的最小花费。

#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <string>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <utility>
#include <algorithm>
#include <functional>
using namespace std;
const int inf = 0x3f3f3f3f;
int dp[35][35][55];


int main() {

    //freopen("aa.in", "r", stdin);

    memset(dp, inf, sizeof(dp));
    for(int i = 0; i <= 30; ++i) {
        for(int j = 0; j <= 30; ++j) {
            dp[i][j][0] = 0;
        }
    }
    for(int i = 1; i <= 30; ++i) {
        for(int j = 1; j <= 30; ++j) {
            for(int k = 1; k <= 50; ++k) {
                if(i * j < k) break;
                else if(i * j == k) {
                    dp[i][j][k] = 0;

                } else {
                    for(int l1 = 1; l1 <= i/2; ++l1) {
                        for(int l2 = 0; l2 <= k; ++l2) {
                            if(l1 * j < l2) break;
                            dp[i][j][k] = min(dp[i][j][k], dp[l1][j][l2]+dp[i-l1][j][k-l2]+j*j);
                        }
                    }
                    for(int l1 = 1; l1 <= j/2; ++l1) {
                        for(int l2 = 0; l2 <= k; ++l2) {
                            if(i * l1 < l2) break;
                            dp[i][j][k] = min(dp[i][j][k], dp[i][l1][l2]+dp[i][j-l1][k-l2]+i*i);
                        }
                    }
                }
            }
        }
    }
    int t, n, m, k;
    scanf("%d", &t);
    while(t--) {
        scanf("%d %d %d", &n, &m, &k);
        printf("%d\n", dp[n][m][k]);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值