每天半小时,成功通过PMP!!!

本文分享了一种适合每日仅能投入半小时的PMP备考方法,强调面授课程的重要性及三次模拟考试的关键作用,旨在帮助考生在有限时间内通过PMP认证。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

每天半小时,成功通过PMP!!!

如果你以通过PMP认证为目的,并且备考时间在70天左右,每天能抽出的时间大概半小时。那么这篇备考总结将适合你。

核心:每天抽出的半小时,均为提高现场面授课的接受程度。面授课要一节不落的上。

备考期间我设置了三个判断,如果不满足条件,请加强复习强度。
开课前的两周,仔细阅读《汪博士解读PMP考试》前四章,为前两天的面授精讲课做好准备。

面授课一天8小时,强度很大,提前预习有助于理解,一直跟着汪小金老师的思路走,对于PMP和PMP考试会有一个全面深入的理解。

接下来的三周也是如此,每天花半小时阅读《汪博士解读PMP考试》相应的章节,为精讲课做准备。

第一个判断:
在听完前两天的精讲课后,如果你接受程度不错,没有睡觉或者长时间走神。那么恭喜你,保持每天半小时的程度就可以了。

第二个判断:
在五次精讲课结束以后,开始做线上第一套模拟题。如果分数不低于115,那么恭喜你,继续保持。

接下来的两周是模拟考试,上午考试,下午郭晗老师讲解。这两周非常关键,是让你从115提高到150左右的关键。

上午做题时,以效率为主,不做过多思考,有疑问的题目直接标记,选一个答案往下做。在下午的试题讲解中,仔细听郭老师的解题思路。以能解决70%的基础题目为目标。对于题目有歧义,题目偏,试题讲解有歧义的,一律略过。只关注基础题目,正常的题目。

分析完试卷后,开始做第二套线上模拟题。在第一次郭老师讲解过后,这次的成绩应该提升到130左右。

第三个判断:
第二次现场模拟考试,也是最后一次模拟考试,这次考试中,要形成自己的答题思路。不因偏题,怪题而轻易改变自己的思路。确保70%的基础题目能够拿分。如果这次你的成绩在140以上。又要恭喜你了。

再有两周的时间就要考试了,这两周每天的半小时做什么呢?巩固自己的答题思路,分析错题和有疑问的题目。关键点,不要纠结偏题怪题,不跟参考答案的解释死磕。重点还是70%的基础题目。

跟我同期的同学一定会发现,这样算时间的话,连卓越提供的试题都做不完。是的,网络串讲我放弃了,第三套线上模拟题没有做,章节题目也没有做完。

回到开头的目标,如果你以通过PMP认证为目的,我认为有4套完整的模拟题目大概够了。预期的成绩为120~160之间,135-140的可能性最大。

备考心得和经验很多,大家感兴趣可以互相交流哈~

标题“51单片机通过MPU6050-DMP获取姿态角例程”解析 “51单片机通过MPU6050-DMP获取姿态角例程”是一个基于51系列单片机(一种常见的8位微控制器)的程序示例,用于读取MPU6050传感器的数据,并通过其内置的数字运动处理器(DMP)计算设备的姿态角(如倾斜角度、旋转角度等)。MPU6050是一款集成三轴加速度计和三轴陀螺仪的六自由度传感器,广泛应用于运动控制和姿态检测领域。该例程利用MPU6050的DMP功能,由DMP处理复杂的运动学算法,例如姿态融合,将加速度计和陀螺仪的数据进行整合,从而提供稳定且实时的姿态估计,减轻主控MCU的计算负担。最终,姿态角数据通过LCD1602显示屏以字符形式可视化展示,为用户提供直观的反馈。 从标签“51单片机 6050”可知,该项目主要涉及51单片机和MPU6050传感器这两个关键硬件组件。51单片机基于8051内核,因编程简单、成本低而被广泛应用;MPU6050作为惯性测量单元(IMU),可测量设备的线性和角速度。文件名“51-DMP-NET”可能表示这是一个与51单片机及DMP相关的网络资源或代码库,其中可能包含C语言等适合51单片机的编程语言的源代码、配置文件、用户手册、示例程序,以及可能的调试工具或IDE项目文件。 实现该项目需以下步骤:首先是硬件连接,将51单片机与MPU6050通过I2C接口正确连接,同时将LCD1602连接到51单片机的串行数据线和控制线上;接着是初始化设置,配置51单片机的I/O端口,初始化I2C通信协议,设置MPU6050的工作模式和数据输出速率;然后是DMP配置,启用MPU6050的DMP功能,加载预编译的DMP固件,并设置DMP输出数据的中断;之后是数据读取,通过中断服务程序从DMP接收姿态角数据,数据通常以四元数或欧拉角形式呈现;再接着是数据显示,将姿态角数据转换为可读的度数格
MathorCup高校数学建模挑战赛是一项旨在提升学生数学应用、创新和团队协作能力的年度竞赛。参赛团队需在规定时间内解决实际问题,运用数学建模方法进行分析并提出解决方案。2021年第十一届比赛的D题就是一个典型例子。 MATLAB是解决这类问题的常用工具。它是一款强大的数值计算和编程软件,广泛应用于数学建模、数据分析和科学计算。MATLAB拥有丰富的函数库,涵盖线性代数、统计分析、优化算法、信号处理等多种数学操作,方便参赛者构建模型和实现算法。 在提供的文件列表中,有几个关键文件: d题论文(1).docx:这可能是参赛队伍对D题的解答报告,详细记录了他们对问题的理解、建模过程、求解方法和结果分析。 D_1.m、ratio.m、importfile.m、Untitled.m、changf.m、pailiezuhe.m、huitu.m:这些是MATLAB源代码文件,每个文件可能对应一个特定的计算步骤或功能。例如: D_1.m 可能是主要的建模代码; ratio.m 可能用于计算某种比例或比率; importfile.m 可能用于导入数据; Untitled.m 可能是未命名的脚本,包含临时或测试代码; changf.m 可能涉及函数变换; pailiezuhe.m 可能与矩阵的排列组合相关; huitu.m 可能用于绘制回路图或流程图。 matlab111.mat:这是一个MATLAB数据文件,存储了变量或矩阵等数据,可能用于后续计算或分析。 D-date.mat:这个文件可能包含与D题相关的特定日期数据,或是模拟过程中用到的时间序列数据。 从这些文件可以推测,参赛队伍可能利用MATLAB完成了数据预处理、模型构建、数值模拟和结果可视化等一系列工作。然而,具体的建模细节和解决方案需要查看解压后的文件内容才能深入了解。 在数学建模过程中,团队需深入理解问题本质,选择合适的数学模
以下是关于三种绘制云图或等高线图算法的介绍: 一、点距离反比插值算法 该算法的核心思想是基于已知数据点的值,计算未知点的值。它认为未知点的值与周围已知点的值相关,且这种关系与距离呈反比。即距离未知点越近的已知点,对未知点值的影响越大。具体来说,先确定未知点周围若干个已知数据点,计算这些已知点到未知点的距离,然后根据距离的倒数对已知点的值进行加权求和,最终得到未知点的值。这种方法简单直观,适用于数据点分布相对均匀的情况,能较好地反映数据在空间上的变化趋势。 二、双线性插值算法 这种算法主要用于处理二维数据的插值问题。它首先将数据点所在的区域划分为一个个小的矩形单元。当需要计算某个未知点的值时,先找到该点所在的矩形单元,然后利用矩形单元四个顶点的已知值进行插值计算。具体过程是先在矩形单元的一对对边上分别进行线性插值,得到两个中间值,再对这两个中间值进行线性插值,最终得到未知点的值。双线性插值能够较为平滑地过渡数据值,特别适合处理图像缩放、地理数据等二维场景中的插值问题,能有效避免插值结果出现明显的突变。 三、面距离反比 + 双线性插值算法 这是一种结合了面距离反比和双线性插值两种方法的算法。它既考虑了数据点所在平面区域对未知点值的影响,又利用了双线性插值的平滑特性。在计算未知点的值时,先根据面距离反比的思想,确定与未知点所在平面区域相关的已知数据点集合,这些点对该平面区域的值有较大影响。然后在这些已知点构成的区域内,采用双线性插值的方法进行进一步的插值计算。这种方法综合了两种算法的优点,既能够较好地反映数据在空间上的整体分布情况,又能保证插值结果的平滑性,适用于对插值精度和数据平滑性要求较高的复杂场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值