小z的袜子(学习莫队算法...)

A1206. 小Z的袜子
时间限制: 1.0s   内存限制: 512.0MB  
总提交次数: 1615   AC次数: 491   平均分: 49.68
将本题分享到:
       
   
试题来源
  2010中国国家集训队命题答辩
问题描述
  作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿。终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命……
  具体来说,小Z把这N只袜子从1到N编号,然后从编号L到R(L 尽管小Z并不在意两只袜子是不是完整的一双,甚至不在意两只袜子是否一左一右,他却很在意袜子的颜色,毕竟穿两只不同色的袜子会很尴尬。
  你的任务便是告诉小Z,他有多大的概率抽到两只颜色相同的袜子。当然,小Z希望这个概率尽量高,所以他可能会询问多个(L,R)以方便自己选择。
输入格式
  输入文件第一行包含两个正整数N和M。N为袜子的数量,M为小Z所提的询问的数量。
  接下来一行包含N个正整数Ci,其中Ci表示第i只袜子的颜色,相同的颜色用相同的数字表示。
  再接下来M行,每行两个正整数L,R表示一个询问。
输出格式
  输出文件包含M行,对于每个询问在一行中输出分数A/B表示从该询问的区间[L,R]中随机抽出两只袜子颜色相同的概率。若该概率为0则输出0/1,否则输出的A/B必须为最简分数。(详见样例)
样例输入
6 4
1 2 3 3 3 2
2 6
1 3
3 5
1 6
样例输出
2/5
0/1
1/1
4/15
样例说明
  询问1:共C(5,2)=10种可能,其中抽出两个2有1种可能,抽出两个3有3种可能,概率为(1+3)/10=4/10=2/5。
  询问2:共C(3,2)=3种可能,无法抽到颜色相同的袜子,概率为0/3=0/1。
  询问3:共C(3,2)=3种可能,均为抽出两个3,概率为3/3=1/1。
  注:上述C(a, b)表示组合数,组合数C(a, b)等价于在a个不同的物品中选取b个的选取方案数。
数据规模和约定
  30%的数据中 N,M ≤ 5000;
  60%的数据中 N,M ≤ 25000;

  100%的数据中 N,M ≤ 50000,1 ≤ L < R ≤ N,Ci ≤ N。


关于莫对算法的简述及一些证明网上比较多,这里就直接粘了(主要是实在是不会啊orz)

莫队算法是离线处理一类区间不修改查询类问题的算法。就是如果你知道了[L,R]的答案。你可以在O(1)的时间下得到[L,R-1]和[L,R+1]和[L-1,R]和[L+1,R]的答案的话。就可以使用莫队算法。

对于莫队算法我感觉就是暴力。只是预先知道了所有的询问。可以合理的组织计算每个询问的顺序以此来降低复杂度。要知道我们算完[L,R]的答案后现在要算[L',R']的答案。由于可以在O(1)的时间下得到[L,R-1]和[L,R+1]和[L-1,R]和[L+1,R]的答案.所以计算[L',R']的答案花的时间为|L-L'|+|R-R'|。如果把询问[L,R]看做平面上的点a(L,R).询问[L',R']看做点b(L',R')的话。那么时间开销就为两点的曼哈顿距离。所以对于每个询问看做一个点。我们要按一定顺序计算每个值。那开销就为曼哈顿距离的和。要计算到每个点。那么路径至少是一棵树。所以问题就变成了求二维平面的最小曼哈顿距离生成树。

关于二维平面最小曼哈顿距离生成树。感兴趣的可以参考点击打开链接

这样只要顺着树边计算一次就ok了。可以证明时间复杂度为n*sqrt(n)这个我不会证明。

但是这种方法编程复杂度稍微高了一点。所以有一个比较优雅的替代品。那就是先对序列分块。然后对于所有询问按照L所在块的大小排序。如果一样再按照R排序。然后按照排序后的顺序计算。为什么这样计算就可以降低复杂度呢。

一、i与i+1在同一块内,r单调递增,所以r是O(n)的。由于有n^0.5块,所以这一部分时间复杂度是n^1.5。
二、i与i+1跨越一块,r最多变化n,由于有n^0.5块,所以这一部分时间复杂度是n^1.5
三、i与i+1在同一块内时变化不超过n^0.5,跨越一块也不会超过2*n^0.5,不妨看作是n^0.5。由于有n个数,所以时间复杂度是n^1.5
于是就变成了O(n^1.5)了。


自己关于莫队的理解:

莫对算法的确是在区间处理上一个很强的算法。算法思路主要分为:分块及排序,区间转移。

分块的话是将长为n序列分为sqrt(n)块,然后建立一个结构体,保存询问及询问的id(由于莫队算法不是按照读入询问的顺序进行处理的),然后就按照区间左端点的所在的块进行排序,由于这样的复杂度可以降到O(n^1.5)。然后就是进行对询问的处理了,前面的这部分,只要是莫对算法都是一样的,而我们每道题需要做的只是将区间转移的函数完成即[a, b]转移到[a', b']对答案的贡献如何更新。最后就按照询问的id将询问的结果打印就好了。


关于这道题,比较经典的莫队算法,分子分母可以化解成(a^2+b^2+c^2+...x^2-(R-L+1))/((R-L+1)*(R-L))这个样子.然后只需要更新a^2+b^2+c^2+...x^2这个就好了。详见代码吧,主要还是学习莫对算法为主:


#include<iostream>
#include<cstring>
#include<math.h>
#include<stdlib.h>
#include<cstring>
#include<cstdio>
#include<utility>
#include<algorithm>
#include<map>
#include<stack>
#include<queue>
using namespace std;
typedef long long ll;
const int maxn = 50005;
const int mod = 1e9+7;
const int Hash = 10000;
const int INF = 1<<30;
const ll llINF = 1e18;

//保存询问
struct Qnode
{
    int l, r, id;
}Q[maxn];
int in[maxn];//输入
int cl, cr;
ll ans;
int n,m;
ll up[maxn], down[maxn];//分子和分母
ll num[maxn];//保存袜子颜色id对数量的映射
int pos[maxn];
bool cmp(Qnode a, Qnode b)
{
    if(pos[a.l] == pos[b.l])
        return a.r<b.r;
    return pos[a.l]<pos[b.l];
}
void add(int k)
{
    ans -= num[k]*num[k];
    num[k]++;
    ans += num[k]*num[k];
}
void del(int k)
{
    ans -= num[k]*num[k];
    num[k]--;
    ans += num[k]*num[k];
}
ll gcd(ll a, ll b)
{
    while(b%a != 0)
    {
        b %= a;
        swap(a, b);
    }
    return a;
}
int main( )
{
    //freopen("input.txt", "r", stdin);
    //freopen("ouput.txt", "wb+", stdout);
    while(~scanf("%d%d", &n,&m))
    {
        int Size=ceil(sqrt(1.0*n));
        memset(num, 0 ,sizeof(num));
        for(int i=1; i<=n; i++)
        {
            scanf("%d", in+i);
            pos[i] = (i-1)/Size;
        }
        //将询问全部读入
        for(int j=0; j<m; j++)
        {
            scanf("%d%d", &Q[j].l, &Q[j].r);
            Q[j].id = j;
        }
        sort(Q, Q+m, cmp);
        //初始化一组区间和结果
        cl =1, cr= 0, ans= 0;
        for(int j=0; j<m; j++)
        {
            //注意这里的变化范围
            if(Q[j].l == Q[j].r)
            {
                up[Q[j].id] = 0;
                down[Q[j].id] = 1;
                continue;
            }
            if(cr < Q[j].r)
            {
                for(int k=cr+1; k<=Q[j].r; k++)
                    add(in[k]);
            }
            else
            {
                for(int k=cr; k>Q[j].r; k--)
                    del(in[k]);
            }
            cr = Q[j].r;
            if(cl < Q[j].l)
            {
                for(int k=cl; k<Q[j].l; k++)
                    del(in[k]);
            }
            else
            {
                for(int k=cl-1; k>=Q[j].l; k--)
                    add(in[k]);
            }
            cl = Q[j].l;
            ll aa = ans - (Q[j].r-Q[j].l+1);
            ll bb = (ll)(Q[j].r-Q[j].l+1)*(Q[j].r-Q[j].l);//这里会数据溢出
            if(aa == 0)
            {
                up[Q[j].id] = 0;
                down[Q[j].id] = 1;
                continue;
            }
            ll cc = gcd(aa, bb);
            up[Q[j].id] = aa/cc;
            down[Q[j].id] = bb/cc;
        }
        for(int i=0; i<m; i++)
            printf("%lld/%lld\n",up[i],down[i]);
    }
    return 0;
}

注意的小地方:数据溢出,莫队区间转移的时候那个大于或大于等于的问题,然后应该就没了。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值