
题解:分析一下,由于是树,所以两点之间的路径有且只有一条,为了求出欧拉路,所以必然会向回走,从递归的角度来看,假设x看作一个树根,有t个孩子y1…yt。其中每个孩子为根的子树欧拉路都加起来,然后去掉最长的两条欧拉路作为起点和终点。所以其实就是所有边权重之和的二倍减去树的直径(即树中最长的简单路)。
所以此题的关键是求出树的直径,算是经典问题之一,有两种方法。
树形dp:dp[x]表示经过x的最长简单路,用ans表示直径。转移方程为:dp[x] = max{dp[yi] + w},其中yi为x的一个孩子,w为权重。ans = max(ans,dp1[x] + dp2[x])也就是选出其中最长的两条简单路相加。
两次dfs(或者bfs):从任意一点开始,dfs找到距离该点最远的节点,这个节点必然是树的直径端点之一(证明)然后第二次dfs从一个端点出发,求出直径长度。
import java.util.*;
public class Main implements Runnable{
private final int mod = 1000000007, max = 200005;
private int [] dp1 = new int[max], dp2 = new int[max];//dp[x] 经过x的最长路径,和次长路径
private List<Edge>[] g = new List[max];
private int d = 0, deepest = 0;
public static void main(String[] args) {
new Thread(null, new Main(), "thread-1", 1024*1024*100).start()

博客主要探讨了如何求解树的直径,即树中最长的简单路径。通过分析树的结构,提出两种方法:一是使用树形dp,通过转移方程求解;二是进行两次dfs,先找到最远节点,再从该节点出发找直径长度。博主指出在Java中,HashMap相对于数组在性能上可能较慢。
最低0.47元/天 解锁文章
990

被折叠的 条评论
为什么被折叠?



