树的直径(最长的简单路径)

博客主要探讨了如何求解树的直径,即树中最长的简单路径。通过分析树的结构,提出两种方法:一是使用树形dp,通过转移方程求解;二是进行两次dfs,先找到最远节点,再从该节点出发找直径长度。博主指出在Java中,HashMap相对于数组在性能上可能较慢。

在这里插入图片描述
题解:分析一下,由于是树,所以两点之间的路径有且只有一条,为了求出欧拉路,所以必然会向回走,从递归的角度来看,假设x看作一个树根,有t个孩子y1…yt。其中每个孩子为根的子树欧拉路都加起来,然后去掉最长的两条欧拉路作为起点和终点。所以其实就是所有边权重之和的二倍减去树的直径(即树中最长的简单路)。
所以此题的关键是求出树的直径,算是经典问题之一,有两种方法。

树形dp:dp[x]表示经过x的最长简单路,用ans表示直径。转移方程为:dp[x] = max{dp[yi] + w},其中yi为x的一个孩子,w为权重。ans = max(ans,dp1[x] + dp2[x])也就是选出其中最长的两条简单路相加。

两次dfs(或者bfs):从任意一点开始,dfs找到距离该点最远的节点,这个节点必然是树的直径端点之一(证明)然后第二次dfs从一个端点出发,求出直径长度。

import java.util.*;

public class Main implements Runnable{

    private final int mod = 1000000007, max = 200005;
    private int [] dp1 = new int[max], dp2 = new int[max];//dp[x] 经过x的最长路径,和次长路径
    private List<Edge>[] g = new List[max];
    private int d = 0, deepest = 0;

    public static void main(String[] args) {
        new Thread(null, new Main(), "thread-1", 1024*1024*100).start()
结构中找到最长路径的问题通常被称为**求直径**。直径是指最长的两个节点之间的路径长度。 ### 算法思路 一种常见的算法是基于**两次广度优先搜索(BFS)**或**深度优先搜索(DFS)**: 1. **第一次搜索**:从任意一个节点出发,找到离它最远的节点 $u$。 2. **第二次搜索**:从节点 $u$ 出发,找到离它最远的节点 $v$,这两个节点之间的路径就是直径。 这种方法的时间复杂度为 $O(n)$,因为每个节点和边只被访问两次。 ### 形动态规划(Tree DP) 另一种方法是使用**形动态规划**(Tree DP),适用于结构中的最长路径问题。这种方法可以同时处理多个子的信息,并且适用于更复杂的情况,例如带权路径。 #### 核心思想 - 对于每个节点,计算其子中的最长路径。 - 分为两种情况: 1. 最长路径完全包含在一个子中。 2. 最长路径由当前节点到两个子最长路径组合而成。 #### 动态规划状态定义 - $dp[i][0]$:表示以节点 $i$ 为根的子中,最长路径的长度。 - $dp[i][1]$:表示以节点 $i$ 为根的子中,次长路径的长度。 #### 转移方程 - 对于每个子节点 $c$ 和边权 $w$: - $dp[i][0] = \max(dp[i][0], dp[c][0] + w)$ - 如果 $dp[c][0] + w$ 大于当前最长路径,则更新最长路径。 #### 代码实现 以下是一个简单的实现示例,使用了 DFS: ```cpp #include <iostream> #include <vector> #include <algorithm> using namespace std; const int MAXN = 10005; vector<pair<int, int>> adj[MAXN]; // 邻接表,存储子节点和边权 int diameter = 0; // 返回以当前节点为根的子的最大深度 int dfs(int node, int parent) { int max1 = 0, max2 = 0; // 最长和次长路径 for (auto &edge : adj[node]) { int child = edge.first, weight = edge.second; if (child == parent) continue; int depth = dfs(child, node) + weight; if (depth > max1) { max2 = max1; max1 = depth; } else if (depth > max2) { max2 = depth; } } diameter = max(diameter, max1 + max2); // 更新直径 return max1; } int main() { int n; cin >> n; for (int i = 1; i < n; ++i) { int u, v, w; cin >> u >> v >> w; adj[u].push_back({v, w}); adj[v].push_back({u, w}); } dfs(1, -1); cout << "最长路径直径)是:" << diameter << endl; return 0; } ``` ### 总结 - **两次 BFS/DFS** 是求直径的最简单有效的方法。 - **形 DP** 更适合处理带权路径或需要动态更新的问题。 这两种方法都可以高效地解决中的最长路径问题。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值