Date:2022.03.29
题意描述:
给定一棵树,树中包含 n 个结点(编号1~n)和 n−1 条无向边,每条边都有一个权值。
现在请你找到树中的一条最长路径。
换句话说,要找到一条路径,使得使得路径两端的点的距离最远。
注意:路径中可以只包含一个点。
输入格式
第一行包含整数 n。
接下来 n−1 行,每行包含三个整数 ai,bi,ci,表示点 ai 和 bi 之间存在一条权值为 ci 的边。
输出格式
输出一个整数,表示树的最长路径的长度。
数据范围
1≤n≤10000,
1≤ai,bi≤n,
−105≤ci≤105
输入样例:
6
5 1 6
1 4 5
6 3 9
2 6 8
6 1 7
输出样例:
22
思路①:首先,如果边都是正权,找树的最长路径有一个通法——先任意找一点uuu,找到距离u最远的点xxx,在找到距离xxx最远的点yyy。由此,点xxx和点yyy的距离即为数的最长路径(也就是树的直径)。
证明:由于直径是最长路径,因此只需证明xxx是直径的一个端点即可。
反证法:假设xxx不是直径的一个端点,我们先求出来这个直径【假设为(a,b)(a,b)(a,b)】,此时仍然有两种情况:
(1) 新的直径(a,b)(a,b)(a,b)不与(u,x)(u,x)(u,x)相交:

虽不相交,但都在一棵树上能彼此到达。因为xxx离着uu
树的最长路径 - 动态规划解法

本文介绍了如何解决寻找树中最长路径的问题,当边的权值可能为负数时,可以使用树形动态规划来求解。思路包括先通过任意点找到树的直径,以及详细的状态转移方程解释。给出了C++实现代码。
最低0.47元/天 解锁文章
2606

被折叠的 条评论
为什么被折叠?



