目录
题目
在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对。输入一个数组,求出这个数组中的逆序对的总数。
时间复杂度:同归并排序 O(nlogn)O(n \log n)O(nlogn)。
空间复杂度:同归并排序 O(n)O(n)O(n),因为归并排序需要用到一个临时数组。作者:LeetCode-Solution
链接:https://leetcode.cn/problems/shu-zu-zhong-de-ni-xu-dui-lcof/solution/shu-zu-zhong-de-ni-xu-dui-by-leetcode-solution/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。限制:
0 <= 数组长度 <= 50000
思路
逆序:数组前面的元素 > 后面的元素
可利用归并排序的思想,在合并过程中求出逆序对。
merge时恰好就是前面数组元素 > 后面子数组元素才合并,符合逆序的定义。就是在归并排序的merge的过程中,顺带求了一下逆序对的个数。
只有当两个子数组都还存在元素且第一个子数组的元素arr[i] > arr[j]才可能构成逆序对,且逆序对的个数恰好为第一个数组从i开始到结束的剩余元素个数。
merge操作中设置count计数器,统计逆序对个数。
题解
/** * 剑指 Offer 51. 数组中的逆序对 */ public class Offer51_reversePairs { public int reversePairs(int[] nums) { return reversePairsInternal(nums, 0, nums.length - 1); } /** * 在nums[l..r]上进行归并排序,返回排序后的逆序对的个数 */ private int reversePairsInternal(int[] nums, int l, int r) { // 数组为空或者只有一个元素 if (l >= r) { return 0; } int mid = l + (r - l) / 2; // 先求出第一个子数组的逆序对个数 int leftCount = reversePairsInternal(nums, l, mid); // 再求出第二个子数组的逆序对个数 int rightCount = reversePairsInternal(nums, mid + 1, r); if (nums[mid] > nums[mid + 1]) { // 左右数组有序后,这两个数组之间还存在逆序,merge过程再求出此时合并过程中的逆序对个数 return leftCount + rightCount + merge(nums, l, mid, r); } // nums[mid] < nums[mid + 1]整个数组已经有序,不可能再有逆序对了! return leftCount + rightCount; } /** * 合并两个有序的子数组nums[l..mid] nums[mid + 1..r]返回合并后逆序对个数 */ private int merge(int[] nums, int l, int mid, int r) { // 合并的时候产生的逆序对的个数 int count = 0; int aux[] = new int[r - l + 1]; for (int i = l; i <= r; i++) { aux[i - l] = nums[i]; } int i = l, j = mid + 1; for (int k = l; k <= r; k++) { if (i > mid) { // 第一个数组已经处理完毕,直接拼接第二个数组,此时没有逆序对 nums[k] = aux[j - l]; j++; } else if (j > r) { // 第二个数组已经处理完毕,直接拼接第一个数组,此时没有逆序对 nums[k] = aux[i - l]; i++; } else if (aux[i - l] <= aux[j - l]) { // 拼接第一个数组,此时没有逆序 nums[k] = aux[i - l]; i++; } else { // 此时第一个数组元素 > 第二个数组元素, // 从i开始到mid结束的所有元素相较于arr[j]都是逆序对 // 逆序对的个数恰好为mid - i + 1 count += mid - i + 1; nums[k] = aux[j - l]; j++; } } return count; } }
复杂度分析
时间复杂度:同归并排序 O(nlogn)。
空间复杂度:同归并排序 O(n),因为归并排序需要用到一个临时数组。