目录
AVL树的概念
二叉搜索树在数据接近有序的时候,可能会退化为单支树,这时候它就不具备查找效率高效的优点了,单支树就相当于在顺序表中查找时间复杂度为O(N),当二叉搜索树接近为完全二叉树时这时它的查找效率是最高的时间复杂度为O(log2N)。
AVL树就是为了避免树退化为单支树而创建的树,规定在向二叉搜索树中插入新节点时,如果能保证每个节点的左右子树高度之差的绝对值不超1(需要对树中的节点进行调整),即可降低树的高度,从而减少平均搜索长度。
AVL树的性质:
1.它的左右子树都是AVL树
2.左右子树高度之差的绝对值不超过(-1 / 0 / 1)
这样就当一个二叉搜索树高度平衡时,它就是AVL树,如果它有N个节点,其高度就可以保持在O(long2N),搜索的时间复杂度为O(long2N)。
AVL树是如何实现的
AVL树在二叉树的基础上在节点中引入了平衡因子这个概念。平衡因子不超过(-1 / 0 / 1),如果超过了对要对树进行调整使之符合条件,这时的树就是AVL树。
平衡因子的计算方法:右子树高度 - 左子树高度