LeetCode刷题笔记 股票问题集合:状态转移框架*

总结

状态转移方程:
在这里插入图片描述base case:
在这里插入图片描述
在这里插入图片描述
状态转移方程,就是调用之前的数据得出今天的数据,同时记录好今天的数据,等着将来的一天去调用。
其中最重要的两步是 状态转移方程 和 base case

动态规划 也像带表格的回溯和递归
对于二维数组构建的动态规划一般可以优化为 一维数组或者O(1)

121. 买卖股票的最佳时机

买卖一次

class Solution {
    public int maxProfit(int[] prices) {
        int n = prices.length;
        // base case: dp[-1][0] = 0, dp[-1][1] = -infinity
        int dp_i_0 = 0, dp_i_1 = Integer.MIN_VALUE;
        for (int i = 0; i < n; i++) {
            // dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])
            dp_i_0 = Math.max(dp_i_0, prices[i] + dp_i_1);      //prices[i] +(-买入的时候的价格);
            // dp[i][1] = max(dp[i-1][1], -prices[i])
            dp_i_1 = Math.max(dp_i_1, -prices[i]);  
            System.out.println(dp_i_0+" : "+dp_i_1);
        }
        return dp_i_0; 
    }
}

122. 买卖股票的最佳时机 II

不限次数

class Solution {
    public int maxProfit(int[] prices) {
        int n = prices.length;
        int dp_i_0 = 0, dp_i_1 = Integer.MIN_VALUE;
        for (int i = 0; i < n; i++) {
            int temp = dp_i_0;
            dp_i_0 = Math.max(dp_i_0, dp_i_1 + prices[i]);
            dp_i_1 = Math.max(dp_i_1, temp - prices[i]);
        }
        return dp_i_0;     
    }
}

123. 买卖股票的最佳时机 III

最多买卖两次

class Solution {
    public int maxProfit(int[] prices) {
        int dp_i10 = 0, dp_i20 = 0;
        int dp_i11 = Integer.MIN_VALUE, dp_i21 = Integer.MIN_VALUE;
        
        for(int price : prices) {
            dp_i20 = Math.max(dp_i20, dp_i21 + price);
            dp_i21 = Math.max(dp_i21, dp_i10 - price);
            dp_i10 = Math.max(dp_i10, dp_i11 + price);
            dp_i11 = Math.max(dp_i11, -price);
        }
        return dp_i20;
    }
}

188. 买卖股票的最佳时机 IV

给定任意买卖次数

class Solution {
    public int maxProfit(int k, int[] prices) {
        int n = prices.length;
        if (k > n/2) 
            return maxProfit_k_inf(prices);

        int[][][] dp = new int[n][k + 1][2];
        for (int i = 0; i < n; i++) 
            for (int j = k; j >= 1; j--) {
                if (i - 1 == -1) {
                    dp[0][j][0] = 0;
                    dp[0][j][1] = -prices[0];
                    continue;
                }
                dp[i][j][0] = Math.max(dp[i-1][j][0], dp[i-1][j][1] + prices[i]);
                dp[i][j][1] = Math.max(dp[i-1][j][1], dp[i-1][j-1][0] - prices[i]);     
            }
        return dp[n - 1][k][0];
 
    }
    
    private int maxProfit_k_inf(int[] prices) {
        int dp_i_0 = 0, dp_i_1 = Integer.MIN_VALUE;
        for (int i = 0; i < prices.length; i++) {
            int temp = dp_i_0;
            dp_i_0 = Math.max(dp_i_0, dp_i_1 + prices[i]);
            dp_i_1 = Math.max(dp_i_1, temp - prices[i]);
        }
        return dp_i_0;     
    }
}

309. 最佳买卖股票时机含冷冻期

买卖次数不限,卖完股票需要隔一天才能买股票

class Solution {
    public int maxProfit(int[] prices) {
        int dp_i_0 = 0, dp_i_1 = Integer.MIN_VALUE;
        int pre_i_0 = 0;
        for(int i = 0; i < prices.length; i++) {
            int temp = dp_i_0;
            dp_i_0 = Math.max(dp_i_0, dp_i_1 + prices[i]);
            dp_i_1 = Math.max(dp_i_1, pre_i_0 - prices[i]);
            pre_i_0 = temp;
        }
        return dp_i_0;
    }
}

714. 买卖股票的最佳时机含手续费

不限次数,交易含手续费

class Solution {
    public int maxProfit(int[] prices, int fee) {
        int dp_i_0 = 0, dp_i_1 = Integer.MIN_VALUE;
        for(int price : prices) {
            int temp = dp_i_0;
            dp_i_0 = Math.max(dp_i_0, dp_i_1   + price);
            dp_i_1 = Math.max(dp_i_1, temp - price - fee);
        }
        return dp_i_0;
    }
}

原文链接:https://leetcode.com/problems/best-time-to-buy-and-sell-stock-with-transaction-fee/discuss/108870/Most-consistent-ways-of-dealing-with-the-series-of-stock-problems
中文链接:https://leetcode-cn.com/problems/best-time-to-buy-and-sell-stock-with-cooldown/solution/yi-ge-fang-fa-tuan-mie-6-dao-gu-piao-wen-ti-by-lab/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值