题目描述
给定一个用字符数组表示的 CPU 需要执行的任务列表。其中包含使用大写的 A - Z 字母表示的26 种不同种类的任务。任务可以以任意顺序执行,并且每个任务都可以在 1 个单位时间内执行完。CPU 在任何一个单位时间内都可以执行一个任务,或者在待命状态。
然而,两个相同种类的任务之间必须有长度为 n 的冷却时间,因此至少有连续 n 个单位时间内 CPU 在执行不同的任务,或者在待命状态。
你需要计算完成所有任务所需要的最短时间。
示例:
输入: tasks = [“A”,“A”,“A”,“B”,“B”,“B”], n = 2
输出: 8
执行顺序: A -> B -> (待命) -> A -> B -> (待命) -> A -> B.
总结
假设数组 [“A”,“A”,“A”,“B”,“B”,“C”],n = 2,A的频率最高,记为count = 3,所以两个A之间必须间隔2个任务,才能满足题意并且是最短时间(两个A的间隔大于2的总时间必然不是最短),因此执行顺序为: A->X->X->A->X->X->A,这里的X表示除了A以外其他字母,或者是待命,不用关心具体是什么,反正用来填充两个A的间隔的。上面执行顺序的规律是: 有count - 1个A,其中每个A需要搭配n个X,再加上最后一个A,所以总时间为 (count - 1) * (n + 1) + 1。
要注意可能会出现多个频率相同且都是最高的任务,比如 [“A”,“A”