LeetCode刷题笔记 63. 不同路径 II

题目描述

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
在这里插入图片描述
网格中的障碍物和空位置分别用 1 和 0 来表示。

说明:m 和 n 的值均不超过 100。

示例:
输入:
[
[0,0,0],
[0,1,0],
[0,0,0]
]
输出: 2
解释:
3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:

  1. 向右 -> 向右 -> 向下 -> 向下
  2. 向下 -> 向下 -> 向右 -> 向右

总结

SC使用的m*n的额外空间, 不过代码看起来要简单些
DC原地算法,PS:不会写就不要写,错nm十多次

Sample Code

class Solution {
    public int uniquePathsWithObstacles(int[][] obstacleGrid) {
        if(obstacleGrid == null || obstacleGrid.length == 0) return 0;
        int m = obstacleGrid.length;
        int n = obstacleGrid[0].length;
        int[][] dp = new int[m][n];
        boolean barrier = false;
        for(int i = 0; i < n; i++){
            if(obstacleGrid[0][i] == 1){
                barrier = true;
            }
            if(barrier) break;
            dp[0][i] = 1;
        }
        barrier = false;
        for(int i = 0; i < m; i++){
            if(obstacleGrid[i][0] == 1){
                barrier = true;
            }
            if(barrier) break;
            dp[i][0] = 1;
        }
        for(int i = 1; i < m; i++){
            for(int j = 1; j< n;j++){
                if(obstacleGrid[i][j] == 1){
                    dp[i][j] = 0;
                }else{
                    dp[i][j] = dp[i - 1][j] + dp[i][j - 1]; 
                }
            }
        }
        return dp[m - 1][n - 1];
    }
}

Demo Code

class Solution {
    public int uniquePathsWithObstacles(int[][] obstacleGrid) {
        
        int row = obstacleGrid.length, col = obstacleGrid[0].length;
        int def = 1;
        for(int i = 0; i < col; i++) {		//给起始的边设定初始值(def)
            if(obstacleGrid[0][i] == 1) {
                obstacleGrid[0][i] = -1;
                def = 0;
            }else {            
                obstacleGrid[0][i] = def;
            }
        }
        def = 1;
        for(int i = 0; i < row; i++) {		//给起始的列设定初始值(def)
            if(i == 0 && obstacleGrid[i][0] == -1) def = 0;
            if(i > 0 && obstacleGrid[i][0] == 1) {
                obstacleGrid[i][0] = -1;
                def = 0;
            }else {
                obstacleGrid[i][0] = def;
            }                
        }
        for(int i = 1; i < row; i++) {
            for(int j = 1;  j < col; j++) {
                if(obstacleGrid[i][j] == 1) {
                    obstacleGrid[i][j] = -1;		//用-1来区分障碍或非障碍
                }else {
                    int top = obstacleGrid[i-1][j] == -1 ? 0 : obstacleGrid[i-1][j];
                    int left = obstacleGrid[i][j-1] == -1 ? 0 : obstacleGrid[i][j-1];
                    
                    obstacleGrid[i][j] = left + top;
                }
            }
        }
        
        return obstacleGrid[row-1][col-1] == -1 ? 0 : obstacleGrid[row-1][col-1];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值