题目描述
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
网格中的障碍物和空位置分别用 1 和 0 来表示。
说明:m 和 n 的值均不超过 100。
示例:
输入:
[
[0,0,0],
[0,1,0],
[0,0,0]
]
输出: 2
解释:
3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
- 向右 -> 向右 -> 向下 -> 向下
- 向下 -> 向下 -> 向右 -> 向右
总结
SC使用的m*n的额外空间, 不过代码看起来要简单些
DC原地算法,PS:不会写就不要写,错nm十多次
Sample Code
class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
if(obstacleGrid == null || obstacleGrid.length == 0) return 0;
int m = obstacleGrid.length;
int n = obstacleGrid[0].length;
int[][] dp = new int[m][n];
boolean barrier = false;
for(int i = 0; i < n; i++){
if(obstacleGrid[0][i] == 1){
barrier = true;
}
if(barrier) break;
dp[0][i] = 1;
}
barrier = false;
for(int i = 0; i < m; i++){
if(obstacleGrid[i][0] == 1){
barrier = true;
}
if(barrier) break;
dp[i][0] = 1;
}
for(int i = 1; i < m; i++){
for(int j = 1; j< n;j++){
if(obstacleGrid[i][j] == 1){
dp[i][j] = 0;
}else{
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
}
return dp[m - 1][n - 1];
}
}
Demo Code
class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
int row = obstacleGrid.length, col = obstacleGrid[0].length;
int def = 1;
for(int i = 0; i < col; i++) { //给起始的边设定初始值(def)
if(obstacleGrid[0][i] == 1) {
obstacleGrid[0][i] = -1;
def = 0;
}else {
obstacleGrid[0][i] = def;
}
}
def = 1;
for(int i = 0; i < row; i++) { //给起始的列设定初始值(def)
if(i == 0 && obstacleGrid[i][0] == -1) def = 0;
if(i > 0 && obstacleGrid[i][0] == 1) {
obstacleGrid[i][0] = -1;
def = 0;
}else {
obstacleGrid[i][0] = def;
}
}
for(int i = 1; i < row; i++) {
for(int j = 1; j < col; j++) {
if(obstacleGrid[i][j] == 1) {
obstacleGrid[i][j] = -1; //用-1来区分障碍或非障碍
}else {
int top = obstacleGrid[i-1][j] == -1 ? 0 : obstacleGrid[i-1][j];
int left = obstacleGrid[i][j-1] == -1 ? 0 : obstacleGrid[i][j-1];
obstacleGrid[i][j] = left + top;
}
}
}
return obstacleGrid[row-1][col-1] == -1 ? 0 : obstacleGrid[row-1][col-1];
}
}