原题
Given an array of integers that is already sorted in ascending order, find two numbers such that they add up to a specific target number.
The function twoSum should return indices of the two numbers such that they add up to the target, where index1 must be less than index2.
Note:
- Your returned answers (both index1 and index2) are not zero-based.
- You may assume that each input would have exactly one solution and you may not use the same element twice.
Example:
Input: numbers = [2,7,11,15], target = 9 Output: [1,2] Explanation: The sum of 2 and 7 is 9. Therefore index1 = 1, index2 = 2.
中文题意
输入一个数组,每个元素为整数,且为升序排序的,在数组中找到两个元素,满足和为一个给定值。数组中的每个元素只能出现一次。
返回结果为所选定元素的位置(位置记录从1开始,且位置1小于位置2)。
每个输入的数组一定会有一个解,如果出现多组元素对满足条件,选择位置1最小的那一组做为结果。
分析
1.输入数组一定会有一个解,那么输入数组的长度至少为2。
2.充分利用输入的数组是升序排序的特点,在检索某一个值时,可以通过大小来简化遍历次数。
java实现
方法一
在数组中找两个满足和为定值的元素,一定需要遍历数组中的元素,那么可以先固定一个元素,假设固定下标为i的元素,(0 <= i<= length - 2),为了满足和为target,那么另一个元素为target-numbers[i],即在剩下的元素中,找到大小为target-numbers[i]的元素。
在剩余的元素中寻找指定的元素,可以遍历寻找
class Solution {
public int[] twoSum(int[] numbers, int target) {
int another = 0;
int[] res = new int[2];
for(int i = 0; i< numbers.length - 1;i++){
another = target - numbers[i];
for(int j = i+1;j < numbers.length;j++){
if(numbers[j] < another){
continue;
}else if(numbers[j] == another){
res[0] = i+1;
res[1] = j+1;
return res;
}else{
break;
}
}
}
return res;
}
}
方法二
与方法一的原理一样,只是在剩下的元素中寻找指定元素的时候,采用二分法的方式,加快遍历。
class Solution {
public int[] twoSum(int[] numbers, int target) {
int start = 0;
int end = numbers.length -1;
int mid = 0;
int another = 0;
int[] res = new int[2];
for(int i = 0 ; i < numbers.length -1;i++){
another = target- numbers[i];
start = i+1;
while(start <= end){
mid = (start + end)/2;
if(numbers[mid] < another){
start = mid + 1;//这里注意,要进行加一操作。
}else if(numbers[mid] > another){
end = mid - 1;//注意这里的减一操作
}else{
res[0] = i+1;
res[1] = mid +1;
return res;
}
}
}
return res;
}
}
方法三
可以从首尾两个方向向中间逼近的方式寻找。
class Solution {
public int[] twoSum(int[] numbers, int target) {
int x =0;
int y = numbers.length -1;
int[] res = new int[2];
while(x < y){
if(numbers[x] + numbers[y] == target){
res[0] = x+1;
res[1] = y+1;
return res;
}else if(numbers[x] + numbers[y] < target){
x++;
}else{
y--;
}
}
return res;
}
}