快速幂算法

5 篇文章 0 订阅

原理介绍

快速幂的目的就是做到快速求幂,假设我们要求a^b,按照朴素算法就是把a连乘b次,这样一来时间复杂度是O(b)也即是O(n)级别,快速幂能做到O(logn)。

我们可以对指数b拆分:

(1)如果b为偶数,那么a^b = (a^2)^(b/2);

(2)如果b为奇数,那么a^b = a * (a^2)^(b-1)/2);

(3)如果b/2为偶数,那么a^b = ((a^2)*(a^2))^(b/4);

(4)如果b/2为奇数,那么a^b = (a^2) *((a^2)*(a^2))^((b/2-1)/2);

(5)如果b/4为偶数,那么a^b = ((a^4)*(a^4))^(b/8);

(6)如果b/4为奇数,那么a^b = (a^2)*(a^4)*((a^4)*(a^4))^((b/4-1)/2);

......

在上面的(3)与(4)中,使用((a^2)*(a^2))表明a^4不是累乘四次a得到的,而是在a^2的基础上,做了一次乘法得到的,在(5)(6)的(a^4)*(a^4)也是同样的原理。

如果b是2的幂次项,那么一直以上面这种方式,可以很快得到结果,不需要进行b次累乘。如果b不是2的幂次项,当发现其中的一个b/n不是偶数,那么就需要把这个阶段的a^n先乘出来。

其实我们一直对b做除以2的运算,而>>可以实现除以二的功能,那么我们用二进制以及位运算来实现上述的过程。

如果b/n为偶数,那么表示b/n的二进制表示中最后一位为0,那么不需要在结果上单独乘以一个a^n;

若b/n为奇数,最后一位为1,那么就需要在结果上乘以一个a^n。

现在举一个例子,比如b = 11二进制表示为(1011),a^11 = a^(2^0+2^1+2^3);

11为奇数,那么需要先乘以一个a,即a^(2^0);

11>>1 = 5为奇数,那么需要先乘以一个a^(2^1);

5>>1 = 2为奇数,此时不需要乘以a^(2^2);

2>>1 = 1为奇数,此时不需要乘以a^(2^3);


实战

以下为牛客网上的一道编程题,在这里我们作为例子练习以下


java实现

public class Solution {
    public double Power(double base, int exponent) {
        if(equal(base,0.0f)){
            return 0.0f;
        }
        
        double result = 1.0f;
        boolean flag = true;
        
        if(exponent < 0){
           exponent *= (-1);
           flag = false;
        }
        
        
        while(exponent != 0){
            if((exponent & 1) == 1){
                result *= base;
            }
            
            base = base *base;
            exponent >>= 1;
            
        }
        
        if(flag ==false){
            result = 1/result;
        }
        return result;
        
  }
    
    //两个double类型数值是否相等,由于计算机无法精确表示小数,当两个double类型的数据的差值在规定的差值范围,即认为相等
    public boolean equal(double num1,double num2){
        if(num1 > num2){
            
        }
        if((num1 >= num2 && num1 - num2 < 0.0000000001) || (num1 <= num2 && num2 - num1 < 0.0000000001)){
            return true;
        }
        return false;
    }
}


参考资料

快速幂讲解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值