Samjia Contest Graph

4 篇文章 0 订阅
4 篇文章 0 订阅

题意:

msc喜欢黑白灰,所以msc很喜欢黑白图,一个n个节点的黑白图是这样定义的:
1、每个节点都有其唯一的编号 1.. n 1..n 1..n
2、图中有若干条无向边,每条边都有颜色(黑色或白色),同时图中没有重边也没有自环。
3、这个图是一个二分图。
现在msc想知道有多少种不同的节点数为 n n n的黑白图。
两个黑白图不同,当且仅当存在一条边 ( u , v ) (u,v) (u,v)在其中一个图中出现但是在另外一个图中没有出现,或者存在一条边
( u , v ) (u,v) (u,v)在两个图中都出现且在两个图中的颜色不同。
由于答案很大,请将答案对 998244353 998244353 998244353取模后再输出。

数据范围:

1 ≤ q , n ≤ 1 0 5 1 \leq q,n \leq 10^5 1q,n105
时限3.5S。

Analysis:

考虑一种算重的求法:枚举有多少个点在 x x x部,然后每个点向 y y y部点连黑边,白边,或不连边。
那么方案数是: ∑ i = 0 n ( i n ) ∗ 3 i ∗ ( n − i ) \sum_{i=0}^{n}(^n_i)*3^{i*(n-i)} i=0n(in)3i(ni)
若一个二分图中有 k k k个连通块,因为每个连通块可以翻转调换 x , y x,y x,y部,那么它会被算重 2 k 2^k 2k次。
我们设 G G G为算重方案的 E G F EGF EGF F F F为答案的 E G F EGF EGF
根据组合意义,不难发现有: G = e 2 F G=e^{2F} G=e2F
表示枚举最终图有多少个连通块,然后乘在一起求方案,系数 2 2 2是算重的要求。
一般来说,图上的方案都可以表示成这种 E G F EGF EGF组合在一起的形式。
我们要求的是 e F = e 2 F e^F=\sqrt{e^{2F}} eF=e2F 。多项式开根即可。
怎么求 G G G? 强行拆开来卷积。
∑ i = 0 n 3 i ∗ ( n − i ) = ∑ i = 0 n 3 ( n − i + i ) 2 − ( n − i ) 2 − i 2 2 = ∑ i = 0 n 3 n 2 − ( n − i ) 2 − i 2 2 \sum_{i=0}^{n}3^{i*(n-i)}=\sum_{i=0}^n3^{\frac{(n-i+i)^2-(n-i)^2-i^2}{2}}=\sum_{i=0}^n3^{\frac{n^2-(n-i)^2-{i^2}}{2}} i=0n3i(ni)=i=0n32(ni+i)2(ni)2i2=i=0n32n2(ni)2i2
我们将 n 2 n^2 n2提到外面去,就是卷积形式了。
由于除以 2 2 2的关系,我们需要分奇偶讨论。
复杂度: O ( n log ⁡ n ) O(n\log{n}) O(nlogn)

Code:

# include<cstdio>
# include<cstring>
# include<algorithm>
using namespace std;
const int N = 1e5 + 5;
const int mo = 998244353;
const int invg = (mo + 1) / 3;
typedef long long ll;
int rev[N << 3],a[N << 3],b[N << 3],c[N << 3],d[N << 3],g[N << 3],ans[N << 3];
int fac_[N],inv[N],fac[N];
int n,T,len,l;
inline int pow(int x,ll p)
{
	int ret = 1;
	for (; p ; p >>= 1,x = (ll)x * x % mo)
	if (p & 1) ret = (ll)ret * x % mo;
	return ret;
}
inline int inc(int x,int y) { return x + y >= mo ? x + y - mo : x + y; }
inline int dec(int x,int y) { return x - y < 0 ? x - y + mo : x - y; }
inline void dft(int *f,int n,int opt)
{
	for (len = 1,l = 0 ; len <= n ; len <<= 1,++l);
	for (int i = 0 ; i < len ; ++i) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (l - 1));
	for (int i = 0 ; i < len ; ++i) if (i < rev[i]) swap(f[i],f[rev[i]]);
	for (int i = 1 ; i < len ; i <<= 1)
	{
		int wn = pow(~opt ? 3 : invg,(mo - 1) / (i << 1));
		for (int j = 0 ; j < len ; j += i << 1)
		{
			int w = 1;
			for (int k = 0 ; k < i ; ++k,w = (ll)w * wn % mo)
			{
				int x = f[j + k],y = (ll)f[i + j + k] * w % mo;
				f[j + k] = inc(x,y),f[i + j + k] = dec(x,y);
			}
		}
	}
	if (opt == -1)
	{
		int x = pow(len,mo - 2);
		for (int i = 0 ; i < len ; ++i) f[i] = (ll)f[i] * x % mo;
	}
}
inline void getinv(int *A,int *B,int n)
{
	if (n == 1) { B[0] = pow(A[0],mo - 2); return; }
	getinv(A,B,n >> 1);
	for (int i = 0 ; i < n ; ++i) a[i] = A[i],b[i] = B[i];
	dft(a,n,1),dft(b,n,1);
	for (int i = 0 ; i < len ; ++i) a[i] = (ll)a[i] * b[i] % mo * b[i] % mo;
	dft(a,n,-1);
	for (int i = 0 ; i < n ; ++i) B[i] = dec((B[i] << 1) % mo,a[i]);
	for (int i = 0 ; i < len ; ++i) a[i] = b[i] = 0;
}
inline void getsqrt(int *A,int *B,int n)
{
	if (n == 1) { B[0] = 1; return; }
	getsqrt(A,B,n >> 1);
	for (int i = 0 ; i < n ; ++i) d[i] = A[i];
	getinv(B,c,n); dft(d,n,1),dft(c,n,1),dft(B,n,1);
	for (int i = 0 ; i < len ; ++i) B[i] = (B[i] + (ll)d[i] * c[i] % mo) % mo * inv[2] % mo;
	dft(B,n,-1);
	for (int i = n ; i < len ; ++i) B[i] = 0;
	for (int i = 0 ; i < len ; ++i) d[i] = c[i] = 0;
}
int main()
{
	fac_[0] = inv[1] = fac[0] = 1;
	for (int i = 1 ; i <= N - 5 ; ++i)
	{
		if (i > 1) inv[i] = (ll)(mo - mo / i) * inv[mo % i] % mo;
		fac[i] = (ll)fac[i - 1] * i % mo,fac_[i] = (ll)fac_[i - 1] * inv[i] % mo;	
	}
	for (int i = 0 ; i <= N - 5 ; ++i)
	if (i & 1) a[i] = (ll)fac_[i] * pow(invg,((ll)i * i - 1) / 2) % mo; else b[i] = (ll)fac_[i] * pow(invg,(ll)i * i / 2) % mo;
	dft(a,2 * N - 5,1),dft(b,2 * N - 5,1);
	for (int i = 0 ; i < len ; ++i) c[i] = (ll)a[i] * a[i] % mo,d[i] = (ll)b[i] * b[i] % mo,a[i] = (ll)a[i] * b[i] % mo;
	dft(a,2 * N - 5,-1),dft(c,2 * N - 5,-1),dft(d,2 * N - 5,-1);
	for (int i = 1 ; i <= N - 5 ; ++i)
	if (i & 1) g[i] = (ll)pow(3,((ll)i * i - 1) / 2) * a[i] % mo * 2ll % mo;
	else g[i] = inc((ll)pow(3,(ll)i * i / 2 - 1) * c[i] % mo,(ll)pow(3,(ll)i * i / 2) * d[i] % mo);
	g[0] = 1;
	for (int i = 0 ; i < len ; ++i) a[i] = b[i] = c[i] = d[i] = 0;
	for (len = 1 ; len <= N - 5 ; len <<= 1);
	getsqrt(g,ans,len);
	scanf("%d",&T);
	while (T--) { scanf("%d",&n); printf("%d\n",(ll)ans[n] * fac[n] % mo); }
	return 0;
}
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值