Python(贪心算法)问题 E: 便利店_天宝来到便利店想买些饮料。便利店有各种型号的瓶装饮料售卖,不同型号的饮料卖不同的价格。

本文介绍了如何使用贪心算法和动态规划解决一个数学问题:在便利店中,给定不同容量和价格的饮料,如何以最低成本购买特定总量的饮料。提供了两种解决方案,一种基于贪心思想,另一种可能涉及动态规划。代码示例展示了如何计算最少花费,同时探讨了可能存在的更优解法。
摘要由CSDN通过智能技术生成

问题 E: 便利店

题目描述

天宝来到便利店想买些饮料。
便利店有各种型号的瓶装饮料售卖,不同型号的饮料卖不同的价格。
1瓶0.25升的卖A元,1瓶0.5升的饮料卖B元,1瓶1升的卖C元,1瓶2升的卖D元。
便利店里每种饮料都是无限供应。

天宝要买N升的饮料,最少需要花多少钱呢?聪明的你写个程序帮她算算吧。

已知 

1)  1≤A,B,C,D≤10^8 ,1≤N≤10^9   

2)   输入的数据都是整数 

输入

输入数据按照下面格式

A B C D

N

输出

输出天宝要买N升的饮料所需要花的钱最小值。

样例输入

20 30 70 90
3

样例输出

150

解答(贪心算法):

a, b, c, d = map(int, input().split())
# 读取数据依次将数值以int形式赋值给a b c d
n1 = int(input())
m1 = min(a * 4, b * 2, c)  # 1L的最小花费
m2 = min(m1 * 2, d)  # 2L的最小花费
ans = n1 // 2 * m2 + n1 % 2 * m1
print(ans)

解答(可能是动态规划):

li = list(map(int, input().split()))
n1 = int(input())
s = [0.25, 0.5, 1, 2]  # 水升容量
price = []
for i in range(4):
    price.append(2 / s[i] * li[i])
sorted_nums = sorted(enumerate(price), key=lambda x: x[1])
# enumerate遍历一个集合对象,它在遍历的同时还可以得到当前元素的索引位置。
# 此时是根据price的值进行排序,sorted_nums的结构类似于二维列表
idx = [i[0] for i in sorted_nums]
# 排序并且返回下标
ans = 0
for i in range(4):
    ans += n1 // s[idx[i]] * li[idx[i]]
    n1 = n1 % s[idx[i]]
# 上面的循环是下面注释代码的简化
# ans = n1 // s[idx[0]] * li[idx[0]] + n1 % s[idx[0]] // s[idx[1]] * li[idx[1]] + n1 % s[idx[0]] % s[idx[1]] // s[
#     idx[2]] * li[idx[2]] + n1 % s[idx[0]] % s[idx[1]] % s[idx[2]] * li[idx[3]]
print(int(ans))

答案不唯一,必定有更加优化的解法欢迎分享

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值