Pandas——读/写不同数据源的数据

一、读/写数据库数据

1、SQLAlchemy连接MySQL数据库

from sqlalchemy import create_engine

# 创建一个mysql连接器,用户名为root,密码为1234
# 地址为127.0.0.1,数据库名称为testdb,编码为utf-8
engine = create_engine('mysql+pymysql://root:1234@127.0.0.1:\
3306/testdb?charset=utf8')
print(engine)
Engine(mysql+pymysql://root:***@127.0.0.1:3306/testdb?charset=utf8)

2、使用read_sql_query、read_sql_table、read_sql函数取数据库数据

# 这里接上一条代码
import pandas as pd

# 使用read_sql_query查看tesdb中的数据表数目
formlist = pd.read_sql_query('show tables', con=engine)
print('testdb数据库数据表清单为:', '\n', formlist)

# 使用read_sql_table读取订单详情表
detail1 = pd.read_sql_table('meal_order_detail1', con=engine)
print('使用read_sql_table读取订单详情表的长度为:', len(detail1))

# 使用read_sql读取订单详情表
detail2 = pd.read_sql('select * from meal_order_detail2',
                      con=engine)
print('使用read_sql函数+sql语句读取的订单详情表长度为:', len(detail2))
detail3 = pd.read_sql('meal_order_detail3', con=engine)
print('使用read_sql函数+表格名称读取的订单详情表长度为:',
      len(detail3))
testdb数据库数据表清单为: 
   Tables_in_data_analysis
0      meal_order_detail1
1      meal_order_detail2
2      meal_order_detail3
使用read_sql_table读取订单详情表的长度为: 2779
使用read_sql函数+sql语句读取的订单详情表长度为: 3647
使用read_sql函数+表格名称读取的订单详情表长度为: 3611

3、使用to_sql方法写入数据

# 使用to_sql存储orderData
detail1.to_sql('test1', con=engine, index=False,
               if_exists='replace')
# 使用read_sql读取test表
formlist1 = pd.read_sql_query('show tables', con=engine)
print('新增一个表格后testdb数据库数据表清单为:', '\n', formlist1)
新增一个表格后testdb数据库数据表清单为: 
   Tables_in_data_analysis
0      meal_order_detail1
1      meal_order_detail2
2      meal_order_detail3
3                   test1

二、读/写文本文件

1、使用read_table、read_csv函数取菜品订单信息表

# 使用read_table读取订单信息表
order = pd.read_table('../data/meal_order_info.csv',
                      sep=',', encoding='gbk')
print('使用read_table读取的订单信息表的长度为:', len(order))

# 使用read_csv读取订单信息表
order1 = pd.read_csv('../data/meal_order_info.csv',
                     encoding='gbk')
print('使用read_csv读取的订单信息表的长度为:', len(order1))
使用read_table读取的订单信息表的长度为: 945
使用read_csv读取的订单信息表的长度为: 945

2、更改参数读取菜品订单信息表

# 使用read_table读取菜品订单信息表,sep = ';'
order2 = pd.read_table('../data/meal_order_info.csv',
                       sep=';', encoding='gbk')
print('分隔符为;时订单信息表为:\n', order2)

# 使用read_csv读取菜品订单信息表,header=None
order3 = pd.read_csv('../data/meal_order_info.csv',
                     sep=',', header=None, encoding='gbk')
print('订单信息表为:', '\n', order3)

# 使用gbk解析菜品订单信息表
# 如果使用utf-8这一段运行会报如下错误
# UnicodeDecodeError: 'utf-8' codec can't decode byte 0xc3 in position 0: invalid continuation byte
order4 = pd.read_csv('../data/meal_order_info.csv',
                     sep=',', encoding='gbk')
分隔符为;时订单信息表为:
     info_id,"emp_id","number_consumers","mode","dining_table_id","dining_table_name","expenditure","dishes_count","accounts_payable","use_start_time","check_closed","lock_time","cashier_id","pc_id","order_number","org_id","print_doc_bill_num","lock_table_info","order_status","phone","name"
0    417,1442,4,NA,1501,1022,165,5,165,"2016/8/1 11...                                                                                                                                                                                                                                            
1    301,1095,3,NA,1430,1031,321,6,321,"2016/8/1 11...                                                                                                                                                                                                                                            
2    413,1147,6,NA,1488,1009,854,15,854,"2016/8/1 1...  
# ***此处省略若干行数据***
[945 rows x 1 columns]
订单信息表为: 
           0       1                 2     3                4   \
0    info_id  emp_id  number_consumers  mode  dining_table_id   
1        417    1442                 4   NaN             1501   
2        301    1095                 3   NaN             1430   
# ***此处省略若干行数据***
[946 rows x 21 columns]                                                                                                                  

3、使用to_csv函数将数据入CSV文件中

import os

print('订单信息表写入文本文件前目录内文件列表为:\n',
      os.listdir('../tmp'))
# 将order以csv格式存储
order.to_csv('../tmp/orderInfo.csv', sep=';', index=False)
print('订单信息表写入文本文件后目录内文件列表为:\n',
      os.listdir('../tmp'))
订单信息表写入文本文件前目录内文件列表为:
 []
订单信息表写入文本文件后目录内文件列表为:
 ['orderInfo.csv']

三、读/写Excel文件

1、使用read_excel函数取菜品订单信息表

user = pd.read_excel('../data/users.xlsx')  # 读取user.xlsx文件
print('客户信息表长度为:', len(user))
客户信息表长度为: 734

2、使用to_excel函数将数据储存为Excel文件

print('客户信息表写入excel文件前目录内文件列表为:\n',
      os.listdir('../tmp'))
user.to_excel('../tmp/userInfo.xlsx')
print('客户信息表写入excel文件后目录内文件列表为:\n',
      os.listdir('../tmp'))
客户信息表写入excel文件前目录内文件列表为:
 [ 'orderInfo.csv']
客户信息表写入excel文件后目录内文件列表为:
 ['orderInfo.csv', 'userInfo.xlsx']

四、案例操作

1、读取订单详情表

# 导入SQLAlchemy库的creat_engine函数
from sqlalchemy import create_engine
import pandas as pd

# 创建一个mysql连接器,用户名为root,密码为1234
# 地址为127.0.0.1,数据库名称为testdb
engine = create_engine('mysql+pymysql://root:1234@127.0.0.1:\
3306/testdb?charset=utf8')
# 使用read_sql_table读取订单详情表格
order1 = pd.read_sql_table('meal_order_detail1', con=engine)
print('订单详情表1的长度为:', len(order1))
order2 = pd.read_sql_table('meal_order_detail2', con=engine)
print('订单详情表2的长度为:', len(order2))
order3 = pd.read_sql_table('meal_order_detail3', con=engine)
print('订单详情表3的长度为:', len(order3))
订单详情表1的长度为: 2779
订单详情表2的长度为: 3647
订单详情表3的长度为: 3611

2、读取订单信息表

# 使用read_table读取订单信息表
orderInfo = pd.read_table('../data/meal_order_info.csv',
                          sep=',', encoding='gbk')
print('订单信息表的长度为:', len(orderInfo))
订单信息表的长度为: 945

3、读取客户信息表

# 读取user.xlsx文件
userInfo = pd.read_excel('../data/users.xlsx',
                         sheet_name='users1')
print('客户信息表的长度为:', len(userInfo))
客户信息表的长度为: 734
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值