自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(48)
  • 收藏
  • 关注

原创 Keras实战之图像分类识别

对比stddev取不同值时的loss函数图可得,TruncatedNormal中stddev值越小,过拟合风险越低,模型效果越好。使用上面训练所得网络模型对测试集进行预测,并对比预测解国和数据集真实结果打印结果报告(包括准确率、recall、f1-score),并将损失函数以折线图的效果直观展示出来。再对比正则化参数l2 = 0.01和0.05的结果可得,l2越大,W的惩罚力度越大,过拟合风险越小。train_loss与val_loss之间差异仍然存在,但是可看出学习率越大,过拟合现象越明显。

2024-07-06 22:37:37 1225 1

原创 词向量模型

传统模型中,我们输入 not ,希望输出是 thou,但是由于语料库庞大,最后一层 SoftMax 太过耗时,所以我们可以改为:将 not 和 thou 同时作为输入,做一个二分类问题,类别 1 表示 not 和 thou 是邻居,类别 0 表示它们不是邻居。如果我们有一个句子,我们可以选出其中连续三个词,用前两个作为词模型的输入,最后一个词作为词模型输出的目标值,这样就成功构建一条训练数据。而如何描述词的特征?举例:下面所示的,输入是 Thou 和 shalt,模型的任务是预测它们的下一个词是什么。

2024-06-28 17:59:39 993

原创 卷积神经网络

答:5x5x3=75,表示每一个卷积核只需要75个参数,此时有10个不同的卷积核,就需要10x75 =750个卷积核参数,不要忘记还有b参数,每个卷积核都有一个对应的偏置参数,最终只需要750+10=760个权重参数。很明显,堆叠小的卷积核所需的参数更少一些, 并且卷积过程越多,特征提取也会越细致,加入的非线性变换也随着增多,还不会增大权重参数个数,这就是VGG网络的基本出发点,用小的卷积核来完成体特征提取操作。卷积参数共享:对输入数据的每一个区域都使用同一组卷积参数进行特征提取,使用相同的卷积核。

2024-06-15 17:33:01 1183 2

原创 深度学习入门

数据获取特征工程建立模型评估与应用数据特征决定了模型的上限预处理和特征提取是最核心的算法与参数选择决定了如何逼近中共上限深度学习解决的问题:怎么样提特征,计算机学习什么样的特征是最合适的。

2024-06-01 10:31:27 873

原创 tensorflow之TFRcords文件读取

TFRcords文件读取与储存(1)TFRecords分析、存取:TFRecords是Tensorflow设计的一种内置文件格式,是一种二进制文件,它能更好的利用内存,更方便复制和移动为了将二进制数据和标签(训练的类别标签)数据存储在同一个文件中文件格式:*.tfrecords写入文件内容:Example协议块(2)TFRecords存储API1、建立TFRecord存储器tf.python_io.TFRecordWriter(path)写入tfrecords文件path: TFRec

2022-06-26 22:48:19 406

原创 二叉树的应用

1.树的遍历详情:给定一棵二叉树的后序遍历和中序遍历,请你输出其层序遍历的序列。这里假设键值都是互不相等的正整数。输入格式:输入第一行给出一个正整数N(≤30),是二叉树中结点的个数。第二行给出其后序遍历序列。第三行给出其中序遍历序列。数字间以空格分隔。输出格式:在一行中输出该树的层序遍历的序列。数字间以1个空格分隔,行首尾不得有多余空格。输入样例:72 3 1 5 7 6 41 2 3 4 5 6 7输出样例:4 1 6 3 5 7 2代码实现:#include<mall

2021-12-26 17:26:05 1199

原创 重排、非监督学习

文章目录1.快手重排2.多模态内容理解技术在搜索中的应用1.快手重排好多序列的引入:每条的播放完成度很高整个序列的正向交互程度很高高粘性,有持续动作能够在内容上序贯属性(1)序列重排架构A.序列重排整体结构采用generator-evaluator范式B.generator从top50中生成模式丰富的序列类型序列生成:beam search、多队列权重、多样性召回C.evaluator 评价召回的序列整体价值(2)多内容混排混排定义及base方案:混排演进过程:混排li

2021-12-26 17:12:01 2230

原创 分布式系统

文章目录1.分布式会话函数2.分布式Tensorflow3.代码实现分布式举例1.分布式会话函数(1)分布式会话APIMonitoredTrainingSession(master=‘’,is_chief=True,checkpoint_dir=None,hooks=None,save_checkpoint_secs=600,save_summaries_steps=USE_DEFAULT,save_summaries_secs=USE_DEFAULT,config=None)分布式会话函数mas

2021-12-19 18:19:17 379

原创 Mnist数字识别卷积实现

文章目录设计流程:代码实现:自定义卷积模型实现:设计流程:1、准备数据2、卷积、激活、池化(两层)3、全连接层4、计算准确率代码实现:# @XST1520203418# 要天天开心呀import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_datafrom tensorflow.contrib.slim.python.slim.nets.inception_v3 import incept

2021-12-19 16:58:17 466

原创 数据结构之二叉树基础

文章目录1.二叉树的概念2.二叉树的遍历3.二叉树查找指定节点4.二叉树删除节点5.遍历、查找、删除基础应用1.二叉树的概念(1)树有很多种,每个节点最多只能有两个子节点的一种形式称为二叉树。(2)二叉树的子节点分为左节点和右节点。(3)如果该二叉树的所有叶子节点都在最后一层,并且结点总数= 2^n -1 , n 为层数,则我们称为满二叉树。(4)如果该二叉树的所有叶子节点都在最后一层或者倒数第二层,而且最后一层的叶子节点在左边连续,倒数第二层的叶子节点在右边连续,我们称为完全二叉树。2.二

2021-12-19 16:16:54 207

原创 卷积神经网络

文章目录1、卷积神经网络与简单的全连接神经网络的比较2、卷积神经网络的发展历史3、卷积神经网络的结构分析4、卷积神经网络的结构(1)卷积层过滤器(观察窗口)5、卷积网络API介绍(1)卷积层(2)新的激活函数-Relu(3)池化层(4)Full Connected层1、卷积神经网络与简单的全连接神经网络的比较(1)全连接神经网络的缺点参数太多,在cifar-10的数据集中,只有32323,就会有这么多权重,如果说更大的图片,比如2002003就需要120000多个,这完全是浪费没有利用像素之间位置

2021-12-12 20:12:24 2322

原创 简单神经网络实现手写数字图片识别

文章目录1.Mnist数据集神经网络实现流程2.代码实现1.Mnist数据集神经网络实现流程准备数据全连接结果计算损失优化模型评估(计算准确性)2.代码实现# @XST1520203418# 要天天开心呀# import tensorflow as tf# print(tf._version_)# mnit = tf.keras.datasets.mnistfrom tensorflow.examples.tutorials.mnist import input

2021-12-12 17:19:22 1181

原创 简单神经网络

文章目录一、神经网络基础1.感知机2.神经网络结构二、浅层人工神经网络模型1、SoftMax回归2、损失计算3、API介绍一、神经网络基础1.感知机注:感知机是解决分类问题有n个输入数据,通过权重与各数据之间的计算和,比较激活函数结果,得出输出应用:很容易解决与、或、非问题注:一个感知机解决不了的东西,可以用多个感知机感知机与逻辑回归的联系与区别:2.神经网络结构(1)定义:在机器学习和认知科学领域,人工神经网络(artificial neural network,缩写ANN),

2021-12-05 21:00:31 1083

原创 tensorflow之文件读取2

文章目录一、图像读取1.图像基本知识2.图像读取API一、图像读取1.图像基本知识(1)图像数字化三要素:长度、宽度、通道数(单通道、三通道)3D-张量:(2)图像基本操作目的:1、增加图片数据的统一性2、所有图片转换成指定大小3、缩小图片数据量,防止增加开销操作:1、缩小图片大小2.图像读取API...

2021-11-28 21:46:07 2063

原创 tensorflow之文件读取

文章目录一、文件读取流程二、文件读取API1.文件队列构造2.文件阅读器3.文件内容解码器三、文件读取举例一、文件读取流程构造一个文件队列读取队列内容根据文件格式不同,读取方式不同(默认只读取一个样本):(1)csv文件:读取一行(2)二进制文件:指定一个样本的bytes读取(3)图片文件:按一张张的读取读取队列内容,一个样本的内容批处理二、文件读取API1.文件队列构造tf.train.string_input_producer(string_tensor, ,shuffl

2021-11-21 21:04:45 1037

原创 tensorflow与深度学习之队列与线程

文章目录一、队列与线程1.队列2.队列管理器3.线程协调器一、队列与线程1.队列在训练样本的时候,希望读入的训练样本时有序的tf.FIFOQueue 先进先出队列,按顺序出队列tf.RandomShuffleQueue 随机出队列(1)tf.FIFOQueue:FIFOQueue(capacity, dtypes, name='fifo_queue')创建一个以先进先出的顺序对元素进行排队的队列capacity:整数。可能存储在此队列中的元素数量的上限dtypes:DTyp

2021-11-14 23:04:34 1385

原创 数据结构之查找算法

一、查找算法介绍在java中,我们常用的查找有四种:顺序(线性)查找二分查找/折半查找插值查找斐波那契查找二、线性查找算法有一个数列: {1,8, 10, 89, 1000, 1234} ,判断数列中是否包含此名称【顺序查找】 要求: 如果找到了,就提示找到,并给出下标值。代码实现:public class SeqSearch { public static void main(String[] args) { int arr[] = { 1, 9, 11, -1, 34, 8

2021-11-14 19:27:47 357

原创 数据结构之排序算法后续

文章目录希尔排序快速排序归并算法基数排序常用排序算法总结和对比希尔排序(1)希尔排序法介绍希尔排序是希尔(Donald Shell)于1959年提出的一种排序算法。希尔排序也是一种插入排序,它是简单插入排序经过改进之后的一个更高效的版本,也称为缩小增量排序。(2)希尔排序法基本思想希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止(3)示意图(4)希尔排序法应用实例:有一群小牛,

2021-11-07 19:18:37 310

原创 数据结构之排序算法

文章目录排序算法算法的时间复杂度算法的空间复杂度冒泡排序选择排序插入排序排序算法(1)排序算法的介绍排序也称排序算法。排序是将一组数据,依指定的顺序进行排列的过程。(2)排序的分类:内部排序:指将需要处理的所有数据都加载 到内部存储器中进行排序。外部排序法:数据量过大,无法全部加载到内 存中,需要借助外部存储进行排序。常见:算法的时间复杂度(1)度量一个程序(算法)执行时间的两种方法:事后统计的方法这种方法可行, 但是有两个问题:一是要想对设计的算法的运行性能进行评测,需

2021-10-31 16:49:51 171

原创 数据结构栈后续及递归

文章目录中缀表达式转换为后缀表达式递归递归-八皇后问题(回溯算法)中缀表达式转换为后缀表达式(1)具体步骤:初始化两个栈:运算符栈s1和储存中间结果的栈s2;从左至右扫描中缀表达式;遇到操作数时,将其压s2;遇到运算符时,比较其与s1栈顶运算符的优先级:(1)如果s1为空,或栈顶运算符为左括号“(”,则直接将此运算符入栈;(2)否则,若优先级比栈顶运算符的高,也将运算符压入s1;(3)否则,将s1栈顶的运算符弹出并压入到s2中,再次转到(4-1)与s1中新的栈顶运算符相比较;遇到括号时

2021-10-24 17:15:23 203

原创 数据结构之栈

文章目录栈栈的引入及介绍栈的实现使用栈完成计算 一个表达式(中缀表达式)前缀表达式(波兰表达式)后缀表达式(逆波兰表达式)栈栈的引入及介绍(1)栈的引入(2)栈的介绍栈的英文为(stack)栈是一个先入后出(FILO-First In Last Out)的有序列表。栈(stack)是限制线性表中元素的插入和删除只能在线性表的同一端进行的一种特殊线性表。允许插入和删除的一端,为变化的一端,称为栈顶(Top),另一端为固定的一端,称为栈底(Bottom)。根据栈的定义可知,最先放入栈中元素在

2021-10-17 13:48:00 226

原创 数据结构之双向链表

文章目录双向链表单向链表的缺点分析:双向链表增删改功能单向环形链表双向链表单向链表的缺点分析:单向链表,查找的方向只能是一个方向,而双向链表可以向前或者向后查找。单向链表不能自我删除,需要靠辅助节点 ,而双向链表,则可以自我删除,所以前面我们单链表删除时节点,总是找到temp,temp是待删除节点的前一个节点(认真体会).示意图帮助理解删除双向链表增删改功能(1)遍历:方法和 单链表一样,只是可以向前,也可以向后查找 //显示链表[遍历] public void list() {

2021-10-10 17:23:16 148

原创 数据结构之单向链表

文章目录链表链表(1)链表介绍链表是有序的列表,但是它在内存中是存储如下:链表是以节点的方式来存储,是链式存储每个节点包含 data 域, next 域:指向下一个节点.如上图:发现链表的各个节点不一定是连续存储.链表分带头节点的链表和没有头节点的链表,根据实际的需求来确定单链表(带头结点) 逻辑结构示意图如下:...

2021-10-03 15:44:18 135

原创 tensorflow后续

文章目录

2021-09-26 20:22:43 107

原创 数据结构和算法(一)

文章目录数据结构和算法的关系数据结构:线性结构和非线性结构稀疏数组数据结构和算法的关系数据data结构structure是一门研究组织数据方式的学科,有了编程语言也就有了数据结构。学好数据结构可以编写出更加漂亮,更加有效率的代码要学好数据结构就要多多考虑如何将生活中遇到的问题,用程序解决程序 = 数据结构 + 算法数据结构是算法的基础,换而言之,要想学好算法,需要把数据结构学到位数据结构:线性结构和非线性结构线性结构1)线性结构作为最常用的数据结构,某特点是数据元素之间存在一对一的线性

2021-09-26 12:22:18 168

原创 深度学习之Tensorflow

文章目录深度学习介绍深度学习介绍(1)介绍:深度学习,如深度神经网络、卷积神经网络和递归神经网络已被应用计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。(2)深度学习框架(3)认识Tensorflow(4)Tensorflow特点真正的可移植性引入各种计算设备的支持包括CPU/GPU/TPU,以及能够很好地运行在移动端,如安卓设备、ios、树莓派等等多语言支持Tensorflow 有一个合理的c++使用界面,也有一个易用的python使用界面

2021-09-18 21:27:19 7351

原创 推荐系统原理

推荐系统定义:根据用户的历史信息和行为,向用户推荐他感兴趣的内容推荐系统解决的问题:信息过载:商品,视频等有好几百万。用户怎样找到自己感兴趣的物品。系统怎样展示几百万的物品给用户,达到自己的商业目标挖掘长尾:大部分冷门物品得不到暴露,然而他们的加和价值超过热门物品用户体验:搜索(当明确自己的目标的时候,我们用搜索引擎)。推荐(当不明确的时候,推荐系统推荐我们感兴趣的商品)推荐系统包含的环节召回(协同过滤召回,内容相似召回,图算法召回等等)->排序(机器学习,二分类算法:LR、GBD

2021-09-11 12:31:33 282

原创 机器学习提升之xgboost算法、lightGBM算法

文章目录一、Xgboost算法(1)Xgboost算法原理(2)Xgboost算法API(3)xgboost举例:泰坦尼克号一、Xgboost算法Xgboost全名叫极端梯度提升树(1)Xgboost算法原理1.最优模型的构建方法构建最优模型的一般方法就是最小化训练数据的损失函数2.目标函数3.CART树4.树的复杂度5.树的分裂(回归树构建方法)6.Xgboost与GDBT的区别(2)Xgboost算法API1.参数介绍1.1通用参数1.2Booster参数

2021-09-05 09:05:47 754

原创 机器学习提升之EM算法、推荐系统、SVM、ARIMA模型

文章目录一、EM算法一、EM算法(1) EM算法流程初始化分布参数E-step:根据参数计算每个样本属于某种类型的概率(Q)M-step:根据Q,求出含有参数的似然函数的下界并最大化它,得到新的参数不断地迭代下去(2)GMM(高斯混合模型)基于EM算法的API模型数据可以看作是从数个Gaussian Distribution 中生成出来的GMM由K个Gaussian分布组成,每个Gaussian称为一个“Component”类似k-means方法,求解方式跟EM一样不断的迭代更新

2021-08-29 17:57:02 1592

原创 机器学习之分类算法-k近邻、朴素贝叶斯、决策树与随机森林、逻辑回归,回归算法-线性回归、岭回归,k-means

文章目录引入:1.机器学习算法分类2.机器学习开发流程3.sklearn数据集4.转换器引入:1.机器学习算法分类监督学习(特征值+目标值)分类(目标值离散型): k-近邻算法、贝叶斯分类、决策树与随机森林、逻辑回归、神经网络回归(目标值连续型): 线性回归、岭回归标注: 隐马尔可夫模型 (不做要求) 监督学习(英语:Supervised learning),可以由输入数据中学到或建立一个模型,并依此模式推测新的结果。输入数据是由输入特征值和目标值所组成。函数

2021-08-22 17:27:59 5525

原创 windows下载并使用graphviz,将dot形式转换成png图片

文章目录引入Windows下载graphviz使用graphviz引入学习机器学习中决策树算法时,想要得到决策树结构,如:而决策树中算法只能导出dot形式,要将dot形式转换成png图片形式,需要下载graphvizWindows下载graphviz网址:http://www.graphviz.org/download/#windows点击下载,得到graphviz双击打开安装下载后文件Graphviz且打开Windows命令行cmd,输入dot -version,得到以下

2021-08-21 20:36:07 5009 3

原创 机器学习之特征工程

文章目录一、数据集二、数据的特征工程1.数据的特征抽取(**1**)字典特征抽取:(**2**)文本特征抽取:方式①(**3**)文本特征抽取:方式②引入:什么是机器学习?一、数据集(1).数据类型①离散型数据:由记录不同类别个体的数目所得到的数据,又称计数数据,所有这些数据全部都是整数,而且不能再细分,也不能进一步提高他们的精确度。②连续型数据:变量可以在某个范围内取任一数,即变量的取值可以是连续的,如,长度、时间、质量值等,这类整数通常是非整数,含有小数部分。(2)数据集①可用数据集

2021-08-15 13:49:02 246

原创 概率之一维随机变量及其分布

文章目录离散型随机变量及其分布连续性随机变量及其分布八大发布一、定义离散型随机变量及其分布连续性随机变量及其分布八大发布

2021-08-15 13:47:13 176

原创 pandas及与matplotlib结合

文章目录一、pandas的series(一维带标签)一、pandas的series(一维带标签)(1)series数组的创建①t1 = pd.Series([1,2,15,48,6],index=list("abcde"))注:其中第一列为所带标签,未指定时默认为索引②通过字典创建series,其中索引就是字典中的键temp_dic = {"name":"xiaohong","id":3,"tel":1008611,"age":18}t = pd.Series(temp_dic)se

2021-08-08 12:24:48 1666

原创 随机事件与概率

文章目录1.定义及运算法则2.古典概型3.几何概型4.概率的基本性质和公式5.独立性1.定义及运算法则2.古典概型3.几何概型4.概率的基本性质和公式5.独立性

2021-08-01 09:30:37 221

原创 numpy

文章目录一、numpy数组1.数组的形状一、numpy数组1.数组的形状数组的形状:包括数组的行和列① 查看数组的形状t2.shape# 有返回值,可直接输出②修改数组的形状t4.reshape((3,4))# 修改形状后可直接输出结果注:若reshape的参数无法使数组均分,则会保ValueError错...

2021-07-30 09:18:05 409

原创 matplotlib绘图及数据分析的初认识

文章目录一、数据分析基础概念1.什么是数据分析2.anaconda3.认识jupyter notebook二、matplotlib1.什么是matplotlib2.matplotlib功能3.matplotlib实例一、数据分析基础概念1.什么是数据分析数据分析是用适当的方法对收集来的大量数据进行统计和整理,得出结论,为后续的决策提供数据支持2.anaconda①创建环境:conda create -n python3 python=3②切换环境:  windows: activate pyt

2021-07-23 18:04:59 553

原创 线代之特征值与特征向量、二次型

文章目录一、特征值与特征向量矩阵的相似对角化实对称矩阵二、二次型二次型标准化正定二次型一、特征值与特征向量矩阵的相似对角化实对称矩阵二、二次型二次型标准化正定二次型...

2021-07-21 21:12:34 992

原创 线代之矩阵、向量组、线性方程组

一、矩阵4.初等变换与初等矩阵5.矩阵方程与矩阵的秩二、向量组和向量空间1.线性表出与线性相关2.极大线性无关组、等价向量组三、线性方程组1.齐次线性方程组2.非齐次线性方程组3.公共解与同解方程组...

2021-07-17 23:04:04 436

原创 线代之行列式、矩阵

一、行列式1.定义及性质2.具体行列式的计算二、矩阵1.认识及基本运算2.矩阵的逆3.伴随矩阵

2021-07-12 12:02:11 195

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除