前言
pycharm远程连接服务器过程不在赘述,自行搜索
一、Screen任务管理
任务运行时间较长时,直接在linux窗口运行程序,程序或许会因网络问题异常终止。
使用screen来解决本地突然离线的问题
#常用的screen命令
1. screen -S name # 创建一个窗口
2. screen -ls # 查看当前已经创建的窗口
3. screen -d -r name # 回到名字为name的窗口
4. screen -x -S name quit # 关闭名字为name的窗口
深度学习框架跑模型时需要指定GPU,否则会把GPU都占了,严重影响他人使用GPU
# python指定代码块
gpu_id = 4
os.environ["CUDA_VISBLE_DEVICES"] = str(gpu_id)
二、远程连接GPU的使用
1.利用SSH首先进行测试
代码如下(示例):
import tensorflow as tf
tf.__version__
tf.test.is_gpu_available()
最终的结果:
2.查询服务器中设置的CUDA环境变量
操作代码如下(示例):
vim /etc/profile
添加环境变量
总结
部分参考B站UP主视频:https://www.bilibili.com/video/av94798192/