LeetCode:365. Water and Jug Problem - Python

189 篇文章 3 订阅
151 篇文章 2 订阅
365. 水壶问题

问题描述:

有两个容量分别为 x升 和 y升 的水壶以及无限多的水。请判断能否通过使用这两个水壶,从而可以得到恰好z升 的水?

如果可以,最后请用以上水壶中的一或两个来盛放取得的 z升 水。

你允许:

  • 装满任意一个水壶
  • 清空任意一个水壶
  • 从一个水壶向另外一个水壶倒水,直到装满或者倒空

示例 1:

输入: x = 3, y = 5, z = 4
输出: True

个人理解,步骤:
(1)y = 5 先满上
(2)y - x 现在 y=2x=0
(3)x = yx = 2y=0
(4)y = 5 满上
(5)用yx满上,现在 y = 4,OK了。

示例 2:

输入: x = 2, y = 6, z = 5
输出: False

问题分析:

分析题目之前先介绍一个定理:
裴蜀定理(贝祖定理): 对于给定的正整数xy,方程a*x+b*y=c有解的充要条件为cgcd(x, y)整数倍 。(至于证明,感兴趣可以深入研究哦)

现在开始分析题目:
题目大概意思是,使用两个水壶,容量分别为 xy升,然后那,你可以相互倒水,最后用这两个水壶给出z升水来,切记,最后是用这两个水壶的哦

(1)首先第一个条件是,x+y>=z,原因是,如果x+y小于z,那么怎么也盛不出z升水来。

(2)很显然,题目可以转成了a*x+b*y=z,然后求ab其实就是判断a、b的解是否存在,即可。现在,就可以使用裴蜀定理 来判断,a*x+b*y=z是否有解了,即判断,z是不是gcd(x, y)整数倍

Python3实现:

# 平安科技 2019-03-20 20:00:00 春招笔试题


class Solution:
    def canMeasureWater(self, x, y, z):
        import math
        if x and y:
            return x + y >= z and z % math.gcd(x, y) == 0
        else:
            return z == x or z == y


if __name__ == '__main__':
    solu = Solution()
    print(solu.canMeasureWater(3, 5, 4))

声明: 总结学习,有问题或不当之处,可以批评指正哦,谢谢。

题目链接

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值