JS实现矩阵相乘、行列式、逆矩阵

一、矩阵运算

1.1 矩阵相乘

  • A m × p {\rm A_{m \times p}} Am×p B p × n {\rm B_{p \times n}} Bp×n
  • C m × n = A m × p × B p × n {\rm C_{m \times n}} = {\rm A_{m \times p}} \times {\rm B_{p \times n}} Cm×n=Am×p×Bp×n
  • C i j = ∑ k = 1 p a i k ⋅ b k j {\rm C_{ij}} = \sum_{ \rm k=1}^{\rm p} a_{\rm ik} \cdot b_{\rm kj} Cij=k=1paikbkj
function multiply(a, b) {
    // 相乘约束
    if (a[0].length !== b.length) {
        throw new Error();
    }
    let m = a.length;
    let p = a[0].length;
    let n = b[0].length;

    // 初始化 m*n 全 0 二维数组
    let c = new Array(m).fill(0).map(arr => new Array(n).fill(0));

    for (let i = 0; i < m; i++) {
        for (let j = 0; j < n; j++) {
            for (let k = 0; k < p; k++) {
                c[i][j] += a[i][k] * b[k][j];
            }
        }
    }

    return c;
}

1.2 行列式

  • 1 阶: ∣ a 11 ∣ = a 11 \begin{vmatrix} a_{11} \end{vmatrix} = a_{11} a11=a11

  • 2 阶: ∣ a 11 a 12 a 21 a 22 ∣ = a 11 ⋅ a 22 − a 12 ⋅ a 21 \begin{vmatrix}a_{11} & a_{12} \\a_{21} & a_{22}\end{vmatrix} = a_{11} \cdot a_{22} - a_{12} \cdot a_{21} a11a21a12a22=a11a22a12a21

  • 3 阶: ∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ = a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 − a 13 a 22 a 31 − a 12 a 21 a 33 − a 11 a 23 a 32 \begin{vmatrix}a_{11} & a_{12} & a_{13} \\a_{21} & a_{22} & a_{23} \\a_{31} & a_{32} & a_{33}\end{vmatrix} = a_{11} a_{22} a_{33} +a_{12} a_{23} a_{31} +a_{13} a_{21} a_{32} -a_{13} a_{22} a_{31} -a_{12} a_{21} a_{33} - a_{11} a_{23} a_{32} a11a21a31a12a22a32a13a23a33=a11a22a33+a12a23a31+a13a21a32a13a22a31a12a21a33a11a23a32

  • n 阶:任意某行(或某列)的各元素与其对应的代数余子式乘积之和

  • 3 阶行列式:对应行平移后公式也可认为『主对角线元素积与副对角线元素积之差

  • 代数余子式:『 ( − 1 ) i + j (-1)^{\rm i+j} (1)i+j 』乘以『去掉方阵第 i 行第 j 列的元素后构成的方阵的行列式』的值

n 阶行列式可取第 1 行的各元素与其对应的代数余子式乘积之和,如:
∣ a 11 a 12 a 13 a 14 a 21 a 22 a 23 a 24 a 31 a 32 a 33 a 34 a 41 a 42 a 43 a 44 ∣ = a 11 ⋅ ( − 1 ) 1 + 1 ⋅ ∣ a 22 a 23 a 24 a 32 a 33 a 34 a 42 a 43 a 44 ∣ + a 12 ⋅ ( − 1 ) 1 + 2 ⋅ ∣ a 21 a 23 a 24 a 31 a 33 a 34 a 41 a 43 a 44 ∣ + a 13 ⋅ ( − 1 ) 1 + 3 ⋅ ∣ a 21 a 22 a 24 a 31 a 32 a 34 a 41 a 42 a 44 ∣ + a 14 ⋅ ( − 1 ) 1 + 4 ⋅ ∣ a 21 a 22 a 23 a 31 a 32 a 33 a 41 a 42 a 43 ∣ \begin{vmatrix}a_{11} & a_{12} & a_{13} & a_{14} \\a_{21} & a_{22} & a_{23} & a_{24} \\a_{31} & a_{32} & a_{33} & a_{34} \\a_{41} & a_{42} & a_{43} & a_{44}\end{vmatrix}= a_{11} \cdot (-1)^{1+1} \cdot \begin{vmatrix}a_{22} & a_{23} & a_{24}\\ a_{32} &a_{33}& a_{34} \\a_{42} & a_{43} & a_{44} \end{vmatrix} + a_{12} \cdot (-1)^{1+2} \cdot \begin{vmatrix}a_{21} & a_{23} & a_{24}\\ a_{31} & a_{33}& a_{34} \\a_{41} & a_{43} & a_{44} \end{vmatrix} +a_{13} \cdot (-1)^{1+3} \cdot \begin{vmatrix}a_{21} & a_{22} & a_{24}\\ a_{31} & a_{32}& a_{34} \\a_{41} & a_{42} & a_{44}\end{vmatrix} +a_{14} \cdot (-1)^{1+4} \cdot \begin{vmatrix}a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32}& a_{33} \\a_{41} & a_{42} & a_{43} \end{vmatrix} \\ a11a21a31a41a12a22a32a42a13a23a33a43a14a24a34a44=a11(1)1+1a22a32a42a23a33a43a24a34a44+a12(1)1+2a21a31a41a23a33a43a24a34a44+a13(1)1+3a21a31a41a22a32a42a24a34a44+a14(1)1+4a21a31a41a22a32a42a23a33a43

function det(square) {
    // 方阵约束
    if (square.length !== square[0].length) {
        throw new Error();
    }
    // 方阵阶数
    let n = square.length;

    let result = 0;
    if (n > 3) {
        // n 阶
        for (let column = 0; column < n; column++) {
            // 去掉第 0 行第 column 列的矩阵
            let matrix = new Array(n - 1).fill(0).map(arr => new Array(n - 1).fill(0));
            for (let i = 0; i < n - 1; i++) {
                for (let j = 0; j < n - 1; j++) {
                    if (j < column) {
                        matrix[i][j] = square[i + 1][j];
                    } else {
                        matrix[i][j] = square[i + 1][j + 1];
                    }
                }
            }
            result += square[0][column] * Math.pow(-1, 0 + column) * det(matrix);
        }
    } else if (n === 3) {
        // 3 阶
        result = square[0][0] * square[1][1] * square[2][2] +
                 square[0][1] * square[1][2] * square[2][0] +
                 square[0][2] * square[1][0] * square[2][1] -
                 square[0][2] * square[1][1] * square[2][0] -
                 square[0][1] * square[1][0] * square[2][2] -
                 square[0][0] * square[1][2] * square[2][1];
    } else if (n === 2) {
        // 2 阶
        result = square[0][0] * square[1][1] - square[0][1] * square[1][0];
    } else if (n === 1) {
        // 1 阶
        result = square[0][0];
    }
    return result;
}

1.2 转置矩阵

function transpose(matrix) {
    let result = new Array(matrix.length).fill(0).map(arr => new Array(matrix[0].length).fill(0));
    for (let i = 0; i < result.length; i++) {
        for (let j = 0; j < result[0].length; j++) {
            result[i][j] = matrix[j][i];
        }
    }
    return result;
}

1.3 伴随矩阵

  • 伴随矩阵:矩阵中每个元素对应的代数余子式所构成矩阵的转置矩阵
function adjoint(square) {
    // 方阵约束
    if (square[0].length !== square.length) {
        throw new Error();
    }

    let n = square.length;

    let result = new Array(n).fill(0).map(arr => new Array(n).fill(0));
    for (let row = 0; row < n; row++) {
        for (let column = 0; column < n; column++) {
            // 去掉第 row 行第 column 列的矩阵
            let matrix = [];
            for (let i = 0; i < square.length; i++) {
                if (i !== row) {
                    let arr = [];
                    for (let j = 0; j < square.length; j++) {
                        if (j !== column) {
                            arr.push(square[i][j]);
                        }
                    }
                    matrix.push(arr);
                }
            }
            result[row][column] = Math.pow(-1, row + column) * det(matrix);
        }
    }
    return transpose(result);
}

PS

det()函数里求『去掉第 0 行第 column 列矩阵』的复制方法相比较,求『去掉第 row 行第 column 列矩阵』里采用尾插法相对更加简洁可读一些。不过还是太 low …


1.4 逆矩阵

  • [ A E ] ⟶ 初 等 变 换 [ E A − 1 ] \rm [A \quad E] \stackrel{初等变换}{\longrightarrow} [E \quad A^{-1}] [AE][EA1]

  • A − 1 = 1 ∣ A ∣ ⋅ A ∗ A^{-1} = \frac{1}{|\rm A|} \cdot \rm A^{*} A1=A1A

function inv(square) {
    if (square[0].length !== square.length) {
        throw new Error();
    }
    let detValue = det(square);
    let result = adjoint(square);
    
    for (let i = 0; i < result.length; i++) {
        for (let j = 0; j < result.length; j++) {
            result[i][j] /= detValue;
        }
    }
    return result;
}

1.5 秩

// TODO

  • 11
    点赞
  • 34
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值