Bzoj3562 神器化合物[Shoi 2014]

33 篇文章 0 订阅
20 篇文章 0 订阅

AC通道:http://www.lydsy.com/JudgeOnline/problem.php?id=3562

[分析]

若把每一个原子看作一个节点,将化学键看作一条边,那么这个题目要求的“分子的个数”很容易就可以看出是求图中联通块的个数。

求联通块的个数,可以使用并查集。可如何求出每一步的联通块的个数呢?

可以知道,当连上一条边时,若此边连接的是两个不同的联通块,那么分子个数就会减一;当删去一条边时,若删去这条边后,它两边的边不连通了,则分子个数就会加一。

如何判断是否连通呢?可以使用dfs。可是若用裸dfs,则程序会超时。我们可以考虑用并查集将图中不会被删除的边进行缩点,这样就可以大大减少程序运行的时间。

#include <iostream>
#include <cstring>
#include <cstdio>

using namespace std;

struct Node{
	int nxt,data;
};

int head[5010];
Node node[400010];
int k[200001][3];
int can[5010][5010]; 
bool lkan[5100];
int qus[10001][3];
bool vis[5010];
int n,m,ans,cnt=1,tot=0;
int fa[5010];
bool kan[5010][5010];

void add(int x,int y){
	node[cnt].nxt=head[x];node[cnt].data=y;head[x]=cnt;cnt++;
	node[cnt].nxt=head[y];node[cnt].data=x;head[y]=cnt;cnt++; 
}

inline int find(int x){
	int tmp=x,nxt;
	while(tmp!=fa[tmp])tmp=fa[tmp];
	while(x!=tmp){
		nxt=fa[x];
		fa[x]=tmp;
		x=nxt;
	}
	return tmp;
}

inline void merge(int x,int y){
	int fx=find(x),fy=find(y);
	if(fx!=fy)fa[fx]=fy;
}

inline int in(){
	int ans=0;
	char x=getchar();
	while(x<'0'||x>'9')x=getchar();
	while(x>='0'&&x<='9'){ans=ans*10+x-'0';x=getchar();}
	return ans;
}

bool dfs(int now,int r){
	if(now==r)return true;
	for(int i=head[now];i;i=node[i].nxt){
		if(!vis[node[i].data]&&can[node[i].data][now]){
			vis[node[i].data]=true;
			if(node[i].data==r){
				return true;
			}
			if(dfs(node[i].data,r))return true;
		}
	}
	return false;
}

int main(){
	n=in();m=in();
	for(int i=1;i<=n;i++)fa[i]=i;
	for(int i=1;i<=m;i++){
		int x,y;
		x=in();y=in();
		k[i][1]=x;
		k[i][2]=y;
		merge(x,y);	
	}
	
	for(int i=1;i<=n;i++){
		int x=find(i);
		if(!lkan[x]){
			lkan[x]=true;
			ans++;
		}
	}

	int q;
	q=in();
	for(int i=1;i<=n;i++)fa[i]=i;
	for(int i=1;i<=q;i++){
		char c;
		scanf("%s",&c);
		if(c=='Q')qus[i][0]=-1;
		else if(c=='D'){
			int x,y;
			x=in();y=in();
			qus[i][0]=1;qus[i][1]=x;qus[i][2]=y;
			kan[x][y]=kan[y][x]=true;
		}
		else{
			int x,y;
			x=in();y=in();
			qus[i][0]=2;qus[i][1]=x;qus[i][2]=y;
		}
	}
	for(int i=1;i<=m;i++){
		if(!kan[k[i][1]][k[i][2]]){
			merge(k[i][1],k[i][2]);
		}
	}
	for(int i=1;i<=m;i++){
		int fx=find(k[i][1]),fy=find(k[i][2]);
		can[fx][fy]++;can[fy][fx]++;
		if(can[fx][fy]==1)
			add(find(fx),find(fy));
	}
	for(int i=1;i<=q;i++){
		int x=qus[i][1],y=qus[i][2];
		int fx=find(x),fy=find(y);
		if(qus[i][0]==-1)printf("%d\n",ans);
		else if(qus[i][0]==1){
			can[fx][fy]--;can[fy][fx]--;
			memset(vis,0,sizeof vis);
			vis[fx]=true;
			if(!dfs(fx,fy)){
				ans++;
			}
		}
		else{
			if(fx==fy)continue;
			memset(vis,0,sizeof vis);
			vis[fx]=true;
			if(!dfs(fx,fy)){
				ans--; 
			}
			can[fx][fy]++;can[fy][fx]++;
			if(can[fx][fy]==1)add(fx,fy);
		}
	}
	return 0;
}



  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值