硬币购物 [Codevs1869,Bzoj1042,HAOI2008]

45 篇文章 0 订阅
33 篇文章 0 订阅

题目地址请点击 ——


硬币购物


【问题描述】

硬币购物一共有 4 种硬币。
面值分别为 c1 , c2 , c3 , c4
某人去商店买东西,去了 tot 次。
每次带 di ci 硬币,买 si 的价值的东西。
请问每次有多少种付款方法。


【输入描述】

第一行 c1 , c2 , c3 , c4 , tot
下面 tot d1 , d2 , d3 , d4 , s , 其中 di,s<=100000,tot<=1000


【输出描述】

每次的方法数。


【输入样例】

1 2 5 10 2
3 2 3 1 10
1000 2 2 2 900


【输出样例】

4
27


【Solution】

参见Byvoid

动态规划+容斥原理:

fi 为不考虑每种硬币的数量限制的情况下,得到面值 i 的方案数。

则状态转移方程为:

fi=Sum{fiCk | iCk>=0 , k=14}

为避免方案重复,要以 k 为阶段递推,边界条件为 f0=1,这样预处理的时间复杂度就是 O(S)

接下来对于每次询问,奇妙的解法如下:
根据容斥原理,答案为 得到面值 S 的超过限制的方案数 - 第 1 种硬币超过限制的方案数 - 第 2 种硬币超过限制的方案数 - 第 3 种硬币超过限制的方案数 - 第 4 种硬币超过限制的方案数 + 第 1,2 种硬币同时超过限制的方案数 + 第 1,3 种硬币同时超过限制的方案数 + …… + 第 1,2,3,4 种硬币全部同时超过限制的方案数。

当第 1 种硬币超过限制时,只要要用到 D1+1 枚硬币,剩余的硬币可以任意分配,所以方案数为

fSi(D1+1)C1

当且仅当 Si(D1+1)C1>=0 ,否则方案数为 0

其余情况类似,每次询问只用问 16 次,所以询问的时间复杂度为 O(1)


【Code】

[cpp]
  1. #include <iostream>  
  2. #include <cstdio>  
  3.   
  4. #define LL long long  
  5.   
  6. using namespace std;  
  7.   
  8. LL c[10],tot,ans,tmp;  
  9. LL f[100010];  
  10.   
  11. int main(){  
  12.       
  13.     scanf(”%lld%lld%lld%lld%lld”,&c[1],&c[2],&c[3],&c[4],&tot);  
  14.     f[0]=1;  
  15.     for(LL i=1;i<=4;i++)  
  16.         for(LL j=c[i];j<=100000;j++)f[j]+=f[j-c[i]];  
  17.       
  18.     for(LL i=1;i<=tot;i++){  
  19.         LL d1,d2,d3,d4,s;  
  20.         scanf(”%lld%lld%lld%lld%lld”,&d1,&d2,&d3,&d4,&s);  
  21.         ans=f[s];  
  22. // ———————————————————-  
  23.         tmp=0;  
  24.         if(s-(d1+1)*c[1]>=0)tmp+=f[s-(d1+1)*c[1]];  
  25.         if(s-(d2+1)*c[2]>=0)tmp+=f[s-(d2+1)*c[2]];  
  26.         if(s-(d3+1)*c[3]>=0)tmp+=f[s-(d3+1)*c[3]];  
  27.         if(s-(d4+1)*c[4]>=0)tmp+=f[s-(d4+1)*c[4]];  
  28.         ans-=tmp;   
  29. // ———————————————————-         
  30.         tmp=0;  
  31.         if(s-(d1+1)*c[1]-(d2+1)*c[2]>=0)tmp+=f[s-(d1+1)*c[1]-(d2+1)*c[2]];  
  32.         if(s-(d1+1)*c[1]-(d3+1)*c[3]>=0)tmp+=f[s-(d1+1)*c[1]-(d3+1)*c[3]];  
  33.         if(s-(d1+1)*c[1]-(d4+1)*c[4]>=0)tmp+=f[s-(d1+1)*c[1]-(d4+1)*c[4]];  
  34.         if(s-(d2+1)*c[2]-(d3+1)*c[3]>=0)tmp+=f[s-(d2+1)*c[2]-(d3+1)*c[3]];  
  35.         if(s-(d2+1)*c[2]-(d4+1)*c[4]>=0)tmp+=f[s-(d2+1)*c[2]-(d4+1)*c[4]];  
  36.         if(s-(d3+1)*c[3]-(d4+1)*c[4]>=0)tmp+=f[s-(d3+1)*c[3]-(d4+1)*c[4]];  
  37.         ans+=tmp;   
  38. // ———————————————————-  
  39.         tmp=0;  
  40.         if(s-(d1+1)*c[1]-(d2+1)*c[2]-(d3+1)*c[3]>=0)tmp+=f[s-(d1+1)*c[1]-(d2+1)*c[2]-(d3+1)*c[3]];  
  41.         if(s-(d1+1)*c[1]-(d2+1)*c[2]-(d4+1)*c[4]>=0)tmp+=f[s-(d1+1)*c[1]-(d2+1)*c[2]-(d4+1)*c[4]];  
  42.         if(s-(d1+1)*c[1]-(d3+1)*c[3]-(d4+1)*c[4]>=0)tmp+=f[s-(d1+1)*c[1]-(d3+1)*c[3]-(d4+1)*c[4]];  
  43.         if(s-(d2+1)*c[2]-(d3+1)*c[3]-(d4+1)*c[4]>=0)tmp+=f[s-(d2+1)*c[2]-(d3+1)*c[3]-(d4+1)*c[4]];  
  44.         ans-=tmp;   
  45. // ———————————————————-  
  46.         tmp=0;  
  47.         if(s-(d1+1)*c[1]-(d2+1)*c[2]-(d3+1)*c[3]-(d4+1)*c[4]>=0)tmp+=f[s-(d1+1)*c[1]-(d2+1)*c[2]-(d3+1)*c[3]-(d4+1)*c[4]];  
  48.         ans+=tmp;   
  49. // ———————————————————-     
  50.         printf(”%lld\n”,ans);  
  51.     }  
  52.       
  53.     return 0;  
  54. }  
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值