模型训练变量命名规范

本文强调了在模型构建过程中采用统一命名规范和关键超参数设置(如batch_size、iters_num和lr)的重要性,以及如何通过dataloader处理数据集。作者详细描述了训练集和测试集的精准度计算,包括每轮训练后的train_acc和test_acc,以及最终精度(test_accuracy)的评估方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

构建模型时使用同一的命名规范是很重要的

超参数

batch:mini_batch_size

训练轮数:iters_num

学习率:lr

数据集

下载的数据集:train_dataset, test_dataset

dataloader之后:train_dataloader, test_dataloader

训练时图像与标签的接收:img,target

精准度

训练集精准度的收集:train_acc

测试集精准度的收集:test_acc

接收训练后output和target的对比:acc

训练集接受每轮的精度数据:train_accuracy

测试集接受每轮的精度数据:test_accuracy

此时的精度数据时一轮训练过后正确识别图片的数量

test_accuray/len(test_dataset)处理之后为实际精度

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值