05.不同路径II
- 题目描述
一个机器人位于一个 m x n
网格的左上角 (起始点在下图中标记为 “Start” )。机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。现在考虑网格中有障碍物。**那么从左上角到右下角将会有多少条不同的路径?**网格中的障碍物和空位置分别用 1
和 0
来表示。
示例一:
输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右
- 题目分析
相比于之前的不同路径,此次在网格中加入了障碍物,但是整体思路仍然可以用
动态规划解决,只是可能需要对递推公式做出一定的修正。
--动态规划五部曲
1. 确定dp数组(dp table)以及下标的含义
采取二维数组dp[i][j]:表示到达坐标(i,j)时的路径有多少条
2. 确定递推公式
😀因为题目存在障碍物,即“1”,则此时需要判断(i-1,j)(i,j-1)是否为通路
--当(i-1,j)为“1”时,则dp[i-1][j] = 0:表示没有路经过(i-1,j)
--当(i,j-1)为“1”时,则dp[i][j-1] = 0:表示没有路经过(i,j-1)
😀到达坐标(i,j)的方法取决于上一个位置,有如下递推公式
-当坐标(i,j)中 i>1 j>1时(到坐标(i,j),有自左向右,自上而下的路径)
dp[i][j] = dp[i-1][j] + dp[i][j-1]
--当坐标(i,j)中 i=1 j>2时(到坐标(i,j),有自上而下,没有自左向右的路径)
dp[i][j] = dp[i][j-1]
--当坐标(i,j)中 i>2 j=1时(到坐标(i,j),有自左向右,没有自上而下的路径)
dp[i][j] = dp[i-1][j]
😀将二者结合可以得到符合题意的递推公式
3. dp数组如何初始化
dp[1][1] = 1:到达(1,1)的路径有1条
当obstacleGrid[i-1][j-1]为1的时候dp[i][j]就不可以通行跳过即可
4. 确定遍历顺序
由递推公式可知是正向遍历
5. 举例推导dp数组
- Java代码实现
public static int uniquePathsWithObstacles(int[][] obstacleGrid) {
// 确定网格范围
int x = obstacleGrid.length, y = obstacleGrid[0].length;
// 确定dp数组
int[][] dp = new int[x + 1][y + 1];
// 初始化数组
dp[1][1] = obstacleGrid[0][0] == 1 ? 0 : 1;
for (int i = 1; i <= x; i++) {
for (int j = 1; j <= y; j++) {
//当遇到障碍物,就跳过递推公式,因为不存在包含障碍物的有效路线
if (obstacleGrid[i - 1][j - 1] != 1) {
if (i == 1 && j > 1)
dp[i][j] = dp[i][j - 1];
else if (j == 1 && i > 1)
dp[i][j] = dp[i - 1][j];
else if (i > 1 && j > 1)
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
}
return dp[x][y];
}