动态规划04-不同路径II(存在障碍物/Java)

文章讲述了在一个包含障碍物的mxn网格中,机器人从左上角到右下角的不同路径数量计算问题,利用动态规划方法,通过定义dp数组并调整递推公式来解决。给出了Java代码实现作为示例。
摘要由CSDN通过智能技术生成

05.不同路径II

  • 题目描述

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。现在考虑网格中有障碍物。**那么从左上角到右下角将会有多少条不同的路径?**网格中的障碍物和空位置分别用 10 来表示。

示例一

image-20240127114743950

输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右
  • 题目分析
相比于之前的不同路径,此次在网格中加入了障碍物,但是整体思路仍然可以用
动态规划解决,只是可能需要对递推公式做出一定的修正。
--动态规划五部曲
    1. 确定dp数组(dp table)以及下标的含义
    采取二维数组dp[i][j]:表示到达坐标(i,j)时的路径有多少条
    2. 确定递推公式
    😀因为题目存在障碍物,即“1”,则此时需要判断(i-1,j)(i,j-1)是否为通路
    --(i-1,j)为“1”时,则dp[i-1][j] = 0:表示没有路经过(i-1,j)
    --(i,j-1)为“1”时,则dp[i][j-1] = 0:表示没有路经过(i,j-1)
    😀到达坐标(i,j)的方法取决于上一个位置,有如下递推公式
    -当坐标(i,j)中 i>1 j>1(到坐标(i,j),有自左向右,自上而下的路径)
    dp[i][j] = dp[i-1][j] + dp[i][j-1]
    --当坐标(i,j)中 i=1 j>2(到坐标(i,j),有自上而下,没有自左向右的路径)
    dp[i][j] = dp[i][j-1]
    --当坐标(i,j)中 i>2 j=1(到坐标(i,j),有自左向右,没有自上而下的路径)
    dp[i][j] = dp[i-1][j]
    😀将二者结合可以得到符合题意的递推公式
    3. dp数组如何初始化
    dp[1][1] = 1:到达(1,1)的路径有1条
    当obstacleGrid[i-1][j-1]1的时候dp[i][j]就不可以通行跳过即可
    4. 确定遍历顺序
    由递推公式可知是正向遍历
    5. 举例推导dp数组
  • Java代码实现
public static int uniquePathsWithObstacles(int[][] obstacleGrid) {
        // 确定网格范围
        int x = obstacleGrid.length, y = obstacleGrid[0].length;
        // 确定dp数组
        int[][] dp = new int[x + 1][y + 1];
        // 初始化数组
        dp[1][1] = obstacleGrid[0][0] == 1 ? 0 : 1;
        for (int i = 1; i <= x; i++) {
            for (int j = 1; j <= y; j++) {
            //当遇到障碍物,就跳过递推公式,因为不存在包含障碍物的有效路线
                if (obstacleGrid[i - 1][j - 1] != 1) {
                    if (i == 1 && j > 1)
                        dp[i][j] = dp[i][j - 1];
                    else if (j == 1 && i > 1)
                        dp[i][j] = dp[i - 1][j];
                    else if (i > 1 && j > 1)
                        dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
                }
            }
        }
        return dp[x][y];
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值