【矩阵论总结(2)】范数

一、向量范数

1、向量范数需要满足的条件:非负性、齐次性、三角不等式

2、2-范数,1-范数,\infty-范数,l_{p}范数

3、范数的等价性

二、矩阵范数

1、矩阵范数需要满足的条件:非负性、齐次性、三角不等式

      同类广义矩阵范数,还需满足相容性

2、矩阵范数与向量相容

3、由向量范数导出的矩阵范数,简称“从属范数”

4、列和范数,谱范数,行和范数

三、范数应用

1、谱半径

      设A=C^{n\times n }的n个特征值为\lambda _{1}',\lambda _{2}',\cdots ',\lambda _{n}',

                                                                                \rho \left ( A \right )=\max_{i}\left | \lambda_{i} \right |

      为A 的谱半径

      谱半径小于或等于A的任一范数

2、矩阵的条件数

      cond\left(A\right)=\left \| A \right \| \left \|A^{-1}\right\|

3、矩阵的非奇异性条件

更新中。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值