数据
描述客观事物的数值,字符,能输入到计算机并且被计算机处理的各种符合的集合
数据就是信息在计算机中的表示
数据元素
数据元素是数据的基本单位,数据元素作为一个整体进行处理。
描述学生信息的一条数据记录就是一个数据元素
描述一个点坐标就是一个数据元素
数据元素通常由若干数据项组成
数据对象
一组相同性质数据元素的集合
数据结构
相互之间存在一种或多种特定关系的数据元素的集合。
数据结构分为逻辑结构和物理结构。
数据结构就是数据元素之间的关系。
逻辑结构:
集合:数据仅仅属于同一个集合
线性:一对一
树形:一对多
图形:多对多
数据的逻辑结构一般采用二元组的形式定义:
数据结构 = (D,S)
其中:
D: 数据元素的集合
S: D中元素之间关系的集合
抽象数据类型
数据类型
一组性质相同的数据的集合及该数据集合上操作的总称。
抽象数据类型
一组数据模型及该模型上的一组操作组成。
抽象数据类型一般使用一个三元组表示:
ADT = (D,S,P)
D 是数据对象 S是D上的关系 P是D上的操作
抽象数据类型可以对应一个java类,数据对象与数据关系可以用成员变量存储和表示,数据操作可以使用方法来实现。
算法
算法就是为解决某一个特定问题而规定的系列的操作,是一组有序的指令的集合。
数据结构与算法
算法特性
输入:一个算法有0个或多个输入。
输出: 至少有一个输出,没有输出的算法没有意义。
有穷性: 算法中执行指令的个数应该是有限的。执行有穷的步骤结束。
确定性: 对于特定的输入它的输出应该是唯一的。
可行性: 算法能够实现,并且在有限的时间内完成。
算法的设计要求:
正确性: 没有语法错误,对于合法的输入和特定的输入能够产生正确的输出。
可读性:算法另一个目的是为了交流,方便阅读。
健壮性: 对于不合理的要求,也能够给出合理的输出,而不是崩溃。
时间效率高和存储空间小
评价一个算法性能的好坏,实际上就是评价算法的资源的占用率。最重要的资源就是时间和空间。
时间复杂度
时间复杂度衡量程序运行需要的时间
讨论计算机程序运行的时间可以采用以下方法:
事后统计
编程实现这个算法,统计所需要的时间。
事前分析
采用渐进时间复杂度分析估算
渐进时间复杂度
简称时间复杂度,在进行算法分析时,语句总的执行次数,记作Tn,是关于问题规模n的函数,分析Tn随着规模n变化的情况,确定Tn的数量级。
随着输入规模n的增大,Tn增长越慢的算法越好。
空间复杂度
空间复杂度衡量程序占用内存的大小
为了求解某一问题,在执行操作期间所需要的存储空间的大小,不包含用来存储输入所需要的空间。
结论:
算法的空间复杂度是以时间复杂度为上限的。