离散数学——图(无序积、图的表示、邻接点与边、图的分类、子图与补图、结点度数、握手定理)

一.无序积

图有无向图与有向图,为了描述无向图,首先给出无序积的概念:
定义设A,B为任意集合,称集合
A & B = { ( a , b ) ∣ a ∈ A , b ∈ B } A \& B=\{(a,b)|a∈A,b∈B\} A&B={(a,b)aAbB}为A与B的无序积,(a,b) 称为无序对

简单来说,就是对于序偶而言,<a,b>与<b,a>并不相同,但是在无序对里 ( a , b ) = ( b , a ) (a,b)=(b,a) ab=ba

二.图的定义

一个是一个序偶<V,E>,记为 G=<V,E>,其中:
(1) V = { v 1 , v 2 , . . . . v n } V=\{v_1,v_2,....v_n\} V={v1,v2,....vn}是有限非空集合, v i v_i vi称为结点,简称点, V V V称为结点集.

(2) E E E是有限集合,称为边集. E E E中的每个元素都有 V V V中的结点对与之对应,称之为边.

需要注意的是,定义中的结点对既可以是无序的,也可以是有序的.若边e与无序结点对 ( u , v ) (u,v) (u,v)相对应,则称e为无向边,记为 e = ( u , v ) = ( v , u ) e=(u,v)=(v,u) e=(u,v)=(v,u),这时称u,v是边e的两个端点.若边e与有序结点对 < u , v > <u,v> <u,v>相对应,则称e为有向边(或),记为 e = < u , v > e=<u,v> e=<u,v>,这时称 u u u e e e始点(或弧尾), v v v e e e终点(或弧头),统称为e的端点
在这里插入图片描述

三.图的表示

1.集合表示法与图形表示法

在这里插入图片描述
但是这两种表示方法都有各自的弊端,于是接下来引入邻接矩阵:

2.邻接矩阵法

定义:设图 G = < V , E > , 其中 V = { v 1 , v 2 , . . . , v n } , 并假定结点已经有了从 v 1 到 v n 的次序,则 n 阶方阵 A G = ( a i j ) n × n 称为 G 的邻接矩阵,其中: G=<V,E>,其中V=\{v_1,v_2,...,v_n\},并假定结点已经有了从v_1到v_n的次序,则n阶方阵A_G=(a_{ij})_{n×n}称为G的邻接矩阵,其中: G=<V,E>,其中V={v1,v2,...,vn},并假定结点已经有了从v1vn的次序,则n阶方阵AG=(aij)n×n称为G的邻接矩阵,其中: a i j = { 1 若( v i , v j ) ∈ E 或 < v i , v j > ∈ E ( i , j = 1 , 2... n ) 0 否则 a_{ij}=\begin{cases} 1 & 若(v_i,v_j)∈E或<v_i,v_j>∈E(i,j=1,2...n)\\ 0 & 否则 \end{cases} aij={10若(vi,vjE<vi,vj>∈Ei,j=1,2...n否则
光看函数表示可能难以理解,接下来给出邻接矩阵的实际操作:
在这里插入图片描述
也就是说,对于无向图:如果两个结点之间有边的话,就写1,没有就写0
对于有向图,则要注意箭头方向表示箭头的起点,表示箭头终点,例如:

在这里插入图片描述
对应的邻接矩阵就是: [ 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 ] \begin{bmatrix} 0&0&0&0&0\\ 1&0&1&1&0\\ 0&1&0&0&0\\ 0&0&1&1&0\\ 0&0&0&0&0 \end{bmatrix} \quad 0100000100010100101000000

四.邻接点与邻接边

在这里插入图片描述

一些简单的特殊图
在这里插入图片描述
其中,含有n个结点的图也称为n阶图
零图没有任何边,容易知道它的邻接矩阵为全0

五.图的分类

1.按边有无方向分类

在这里插入图片描述

2.按有无平行边分类

在这里插入图片描述

注意不要搞混了简单图和平凡图,简单图是无环的线图。平凡图是只有一个结点的零图

特别注意一下:在有向图中,连接两个相同的结点,但是方向相反的边,不是平行边!!

在这里插入图片描述

3.按边或结点是否含权分类

在这里插入图片描述
边有权值的赋权图:
在这里插入图片描述
边和结点都有权值:
在这里插入图片描述
在这里插入图片描述
f 表示结点, g 表示边 f表示结点,g表示边 f表示结点,g表示边 < f , g > 对应 < V , E > <f,g>对应<V,E> <f,g>对应<V,E>,方便记忆
在这里插入图片描述

六. 子图与补图

1.子图

(1)子图 若 V 1 ⊆ V , E 1 ⊆ E , 则称 G , 是 G 的子图 , 记为 G 1 ⊆ G 若V_1⊆V,E_1⊆E,则称G,是G的子图,记为G_1⊆G V1V,E1E,则称G,G的子图,记为G1G

(2)真子图: 若 G 1 ⊆ G , 且 G ≠ G ( 即 V 1 ⊆ V 或 E 1 ⊆ E ) , 则称 G 1 是 G 的真子图,记为 G 1 ⊂ G 若G_1⊆G,且G≠G(即V_1⊆V或E_1⊆E),则称G_1是G的真子图,记为G_1⊂G G1G,G=G(V1VE1E),则称G1G的真子图,记为G1G

(3)生成子图:若 V 1 = V , E 1 ⊆ E , 则称 G 1 是 G 的生成子图 V_1=V,E_1⊆E,则称G_1是G的生成子图 V1=V,E1E,则称G1G的生成子图
通俗理解就是在原来的图上删边(可以删除0条边,也就是 E 1 = E E_1=E E1=E时)

(4)导出子图 设 V 2 ⊆ V 且 V 2 ≠ Ø 设V_2⊆V且V_2≠ Ø V2VV2=Ø, 以 V 2 为结点集 , 以两个端点均在 V 2 中的边的全体为边集的 G 的子图 , 称为 V 2 导出的 G 的子图 , 简称 V 2 的导出子图 . 以V_2为结点集,以两个端点均在V_2中的边的全体为边集的G的子图,称为V_2导出的G的子图,简称 V_2的导出子图. V2为结点集,以两个端点均在V2中的边的全体为边集的G的子图,称为V2导出的G的子图,简称V2的导出子图.
通俗理解就是在原图上删点,但是剩余的点的边关系要保留

在这里插入图片描述
同时,G也是G自己的子图、生成子图、导出子图:

在这里插入图片描述

2.完全图与补图

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
这边解释5条边一定有3条在 G G G G ‾ \overline{\text{G}} G中:
1.若 G G G有0条边,则 G ‾ \overline{\text{G}} G中有5条边,而5>3,则 G ‾ \overline{\text{G}} G中一定有三条边
2.若 G G G有1条边,则 G ‾ \overline{\text{G}} G中有4条边,同1中理由
3.若 G G G有2条边,则 G ‾ \overline{\text{G}} G中有3条边
4.若 G G G有3(或4或5)条边,显然满足

七.结点度数与握手定理

在这里插入图片描述
记住:出正入负(与电路中的电流流入流出符号相反,不要搞混了)
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值