豆包AI数学对话的底层逻辑

引言;

在一次偶然的机会我使用豆包AI在求解一道数学题目的过程中,发现了最基本的数学公式,即便是我认为AI数学对话中的底层逻辑,本次我的研究,也是基于这一底层逻辑进行分析,刨析AI对话中如何实现从图片到解题这一过程,了解AI数学对话的底层思想

对于豆包AI,其求解数学题目分为如下几步

简略而言可以分为以下四部分

目录;

目录;

1,题目文本选取

2,归类题型

3,调用合适的数学运算,推理模块

4,验证逻辑

5,引用文献



正文;

1,题目文本选取

在我们的日常生活中,可以使用提取文字的应用程序数不胜数

微信,qq,百度网盘,夸克浏览器,钉钉,搜狗浏览器

他们各自都有各自的优点,甚至可以说大大方便了人们的生活,如果想要模拟al是如何对一个题目进行求解时,那么从图片上提取文字便是必不可少的,甚至是必要的,但是这些软件的识别也是基于一些底层来实现,这些底层各有各的缺点和优点

于此,我选择使用Umi-OCR    原因如下;

#准确度高:采用深度学习技术,在训练模型时使用大量样本数据,能更好地识别文本中的字符和数字,对低质量图像和扭曲图像也有出色的识别效果。

#速度快:运用多线程处理技术,可在短时间内完成大量文档的识别和转换。

#支持多语言:除常见的中英文外,还支持多种欧洲语言和亚洲语言的识别,如日文、韩文、德文、法文等。

#免费开源:项目代码在 GitHub 开源,用户可免费使用,也可根据自身需求进行二次开发。

#离线使用:下载解压后即可离线运行,无需网络连接,方便在没有网络的环境中使用。

#兼容性好:适用于 Windows 7 x64、Linux x64 等系统,可满足不同用户的操作系统需求。

而此程序的应用场景也非常广泛

而对于其中的场景,我需要将图片OCR并且将其中的文档数字化

这是我成功安装后的文件夹

打开其应用程序后

勾选截图OCR,便可以将图片粘贴到此应用程序中

通过此应用程序,进而将其中的图片中的文字数字化

这是我在高等数学中的一道练习题目,将其放入截图OCR中

发现其0失误的将其全部转化完成为文字,虽然在其顺序可能存在其微小的误差,但是也证明了我的方案的可行性。

如此,便将其文本选取完全实现完毕!!!

2,归类题型

由于在这次的研究中,在互联网上并未找到其对于AI数学应用的具体流程,因此这部分基于我的猜想,即对提取文字内容进行的分析我具体将这一猜想分为了两部分即

  1. 关键字;例如求解“极大值”“极小值”“微分方程”等
  2. 符号提取;例如在提取到的文字中的“%”“+”等

然后基于此对题目进行分析,从而确立求解路线而符号也将其中的函数进行调用,即用到哪一模块,调用哪一模块的函数。

类如一个混合加法和乘法的运算,根据符号的优先级,先对乘法进行求解,即调用乘法运算的函数,再调用加法运算的函数,如此,便只需列出一个个函数,从而进行判断时,用到哪个调用哪个,提高了代码的通用性

以我前些时候学到的单链表为例;

在源文件中建立许许多多的函数,如果在后续需要对函数进行调用就在后面直接使用函数即可,无需重新建立,这样子可以是组合更加自由,例如我可以先头插一个元素,然后进行打印在进行一个头插。

在这里我想表达的意思是任何一道不同的数学题目都有其特定的解题顺序,而建立函数使其只需记住不同的顺序,然后对其函数进行调用,便可以使千变万化的解法变得统一。

例如,在这道题目中

对于我们而言,求解方法可能数不胜数

但是对于电脑,可能是有一固定的步骤

即识别到题目中的“最大值”和“区间(-1,1)”便将解题步骤刻画完毕

即:

第一步将函数y=x^2+1进行求导得y’=2x

第二步令求导后的结果为0即2x=0,求得其拐点为x=0

第三步进行判断,即判断x<0是y’的值,判断是否存在存在极大值,对于本道题目而言存在极小值,并不存在极大值

因此终结后续流程,直接return,并且给出选项D

(以上基于我的猜想)

如果存在则进行

第四步判断是否在区间内

第五步将最大值代数求解

对于则这道题目而言,我们可以调用求导函数,调用代值函数,调用判断函数,通过不断地调用函数,从而使得其每一道题目按自己的解题步骤完成并且准确的显现在使用者面前

Tip:我不太清楚AI是如何识别函数图像的,因此按照可以用电脑解释的逻辑进行排步骤。

3,调用合适的数学运算,推理模块

这是我简要编写的一个c语言代码

 

即求解鸡兔同笼问题

我认为可以完全按照我的猜想进行实现

即首先对题目进行识别,即识别出来只数和腿数

并且将识别结果反馈给程序

程序进行运算并且将运算过程打印

再进行判断,不过对于此题目过于简单,无法进行分成不同的步骤进行运算,因此一步到底

推理模块即为一些固定的文字,从而给人一种错觉,即“你懂了”而实际上,这种固定的文字以及证明题对于只会运用0和1的计算机并不了解,就反复让豆包帮我解答一道证明题目,那么,换一种同类型的证明题目说使用的文字完全相同

 

4,验证逻辑

讲真的,这一部分我再一次进行了大胆的猜想,即如果我是研发人员,我会如何解决这个问题,而并不是真正的解法,可能是一个很大的谬论

由于AI写出的数学题大部分都是很简单的一些数学题目

因此我认为一道AI解答数学题常常存在最少两种解法,也正是因为如此,我能想到最好的验证逻辑的方法便是用另一种方法进行求解,即在数学的求积分,有第一换元积分法和第二还原积分法,而AI给出的数学答案却只含有一个解法,因此我猜想提出的逻辑验证即为用第二种方法进行求解,倘若这一道题目非常简单,或者这一方法使用所有题目,便不进行逻辑验证,比如1+1=2这种问题上。

5,引用文献

CSDN--图片识别,从图片中提取文字,OCR来个大包的二重积分,2024,4

地址图片识别,从图片中提取文字,OCR_图片ocr-CSDN博客

CSDN--怎么把图片转文字?快来看看如何高效处理图片中的文本信息吧普通网友,2024,4

地址怎么把图片转文字?快来看看如何高效处理图片中的文本信息吧-CSDN博客

Github--Umi-OCR

地址;

GitHub - hiroi-sora/Umi-OCR: OCR software, free and offline. 开源、免费的离线OCR软件。支持截屏/批量导入图片,PDF文档识别,排除水印/页眉页脚,扫描/生成二维码。内置多国语言库。

豆包

地址;豆包 - 字节跳动旗下 AI 智能助手

<think>好的,我现在需要帮用户了解如何接入豆包实时对话AI的API。首先,我应该先确认用户所说的“豆包”是否属于字节跳动旗下的产品,因为之前有听说过豆包是字节的AI服务。但可能需要进一步核实,避免信息错误。 接下来,用户需要具体的接入步骤。通常,API接入流程大致分为注册账号、获取API密钥、查看文档、调用API这几个步骤。但不同平台的细节可能不同,比如是否需要企业认证,API的端点地址,支持的编程语言等。 由于“豆包实时对话AI”可能不是公开的或者常见的API服务,可能存在信息不足的情况。这时候,我应该建议用户先访问官方网站或开发者平台,查找最新的文档。如果找不到,可能需要联系他们的技术支持。 另外,用户可能需要示例代码,比如用Python或JavaScript如何发起请求,如何处理响应。常见的做法是使用HTTP POST请求,携带API密钥和请求参数,比如消息内容、模型版本等。 还要注意可能遇到的常见问,比如认证失败、参数错误、频率限制等,以及如何处理这些错误。比如检查API密钥是否正确,确认请求格式是否符合文档要求,或者查看返回的状态码和错误信息。 如果豆包API需要特定的SDK,用户可能需要安装对应的库,并按照文档初始化客户端。例如,有的平台提供Python SDK,可以通过pip安装,然后调用相应的方法。 另外,费用问也是需要考虑的。用户可能需要了解API的定价策略,比如按调用次数计费,还是订阅制,是否有免费额度等。这部分信息通常会在开发者平台的定价页面说明。 最后,建议用户测试API时先从简单的请求开始,逐步验证功能,确保集成到应用前能正常工作。同时,关注API的响应时间和稳定性,确保符合应用需求。 总结下来,我需要提供一个结构清晰的步骤指南,包括注册、获取密钥、查阅文档、调用示例以及注意事项。同时,提醒用户遇到问时查看官方资源或联系支持团队。</think>豆包实时对话AI的API接入通常需要遵循以下步骤。由于平台可能更新频繁,请务必以[官方文档](https://www.volcengine.com/docs/8234)为准: --- ### **接入步骤概览** 1. **注册开发者账号** - 访问[火山引擎开放平台](https://www.volcengine.com/) - 完成企业/个人实名认证(通常需要企业资质) - 进入「控制台」创建新应用 2. **获取API密钥** - 在控制台中找到「访问密钥」页面 - 生成`Access Key`和`Secret Key`(保存至安全位置) 3. **查阅API文档** - 进入[豆包大模型API文档](https://www.volcengine.com/docs/8234) - 确认支持的模型列表(如`Skylark2-Pro`)、参数说明及计费规则 4. **调用API接口** - 基础请求示例(Python): ```python import requests url = "https://open.volcengineapi.com/api/v1/chat/completions" headers = { "Authorization": "Bearer YOUR_ACCESS_KEY", "Content-Type": "application/json" } data = { "model": "Skylark2-Pro", "messages": [{"role": "user", "content": "你好!"}], "temperature": 0.7 } response = requests.post(url, json=data, headers=headers) print(response.json()) ``` 5. **处理响应** - 成功响应示例: ```json { "code": 0, "message": "success", "data": { "choices": [{ "message": {"content": "你好!有什么可以帮助您?"} }] } } ``` --- ### **关键注意事项** 1. **认证方式** - 需在请求头中携带`Authorization: Bearer {ACCESS_KEY}` - 部分接口可能需签名验证(参考文档) 2. **速率限制** - 免费版通常有QPS限制(如5次/秒) - 企业版可联系商务调整配额 3. **计费模式** - 按Token量计费(输入+输出) - 不同模型单价不同(如`Skylark2-Pro`约¥0.01/千Token) 4. **错误处理** - 常见错误码: - `4001`: 参数错误 - `4010`: 权限不足 - `5000`: 服务端异常 --- ### **推荐调试工具** 1. 使用Postman测试请求 2. 通过控制台的「在线调试」功能实时验证 3. 监控调用日志与分析面板(查看用量及耗时) 如需更详细的代码示例或SDK集成方式,建议直接参考官方提供的[GitHub仓库](https://github.com/volcengine/volc-sdk-python)或联系技术支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值