搭建一个健壮的数据工程环境,往往比想象中更为繁琐。
依赖冲突、配置文件、兼容性问题……你可能要花上好几天,仅仅是为了让基础设施准备就绪,还没开始真正解决数据问题。而这正是Docker容器大显身手的地方:只需几条命令,即可部署出预先配置好的环境,几分钟内即可投入使用。
本文为你整理了七款在数据工程各类任务中都极为实用的Docker容器。让我们一起来看看吧!
使用Docker Hub快速入门
在介绍具体容器之前,先了解一下如何从Docker Hub拉取和运行(几乎)任何镜像的通用方法:
# 从Docker Hub拉取镜像
$ docker pull image_name:tag
# 基于该镜像运行容器
$ docker run -d -p host_port:container_port --name container_name image_name:tag
接下来,让我们探索提升数据工程工作流的七大容器。
1. Prefect:现代化工作流编排
Prefect以开发者友好、Python化的方式编排和监控数据工作流。
与Airflow相比,Prefect更易上手。在Prefect中,工作流默认成功,只有在明确指示时才会失败。
主要特性:
-
以Python代码而非XML/YAML定义工作流
-
内置重试、通知和失败处理机制
-
直观UI,统一监控所有流水线运行情况
-
仅需极少配置即可良好扩展
拉取与运行方法:
$ docker pull prefecthq/prefect
$ docker run -d -p 4200:4200 --name prefect prefecthq/prefect orion start
通过 http://localhost:4200 访问UI,开始创建工作流。
2. ClickHouse:分析型数据库
ClickHouse是一款专为OLAP工作负载和实时分析设计的高性能列式数据库。
当你需要在毫秒级分析数十亿行数据时,ClickHouse不容错过。其列式存储引擎让聚合查询速度提升百倍甚至千倍,远超传统行存数据库。
主要特性:
-
列式存储,极致分析型查询性能
-
快速实时数据摄取
-
多节点线性扩展
-
SQL接口,并支持时序与数组扩展
拉取与运行方法:
$ docker pull clickhouse/clickhouse-server
$ docker run -d -p 8123:8123 -p 9000:9000 --name clickhouse clickhouse/clickhouse-server
可通过 http://localhost:8123 HTTP访问,或9000端口原生协议连接。可参考相关指南了解更多Docker网络配置方法。
3. Apache Kafka:流处理平台
Kafka是一款分布式事件流平台,能够处理海量日常事件,是实时事件驱动架构的核心。
主要特性:
-
实时存储与处理数据流
-
多节点横向扩展,实现高吞吐量
-
分区内消息顺序保证
-
可配置的数据持久化
拉取与运行方法:
$ docker pull bitnami/kafka
$ docker run -d --name kafka -p 9092:9092 -e KAFKA_CFG_ZOOKEEPER_CONNECT=zookeeper:2181 bitnami/kafka
注意: 你还需同时运行ZooKeeper,或者使用集成了两者的镜像。配置完毕后,即可创建主题并以极低延迟流式处理数据。
4. NiFi:数据流自动化
Apache NiFi是一款强大的数据集成与流自动化系统,具备可视化界面,便于设计、管控和监控数据管道。
非常适合自动化不同系统间的数据流转,内置多种处理器用于转换、路由和集成。
主要特性:
-
拖拽式界面,轻松设计复杂数据流
-
支持背压与数据溯源,保障数据交付
-
丰富的内置处理器,实现连接与转换
-
细粒度安全策略与数据治理
拉取与运行方法:
$ docker pull apache/nifi:latest
$ docker run -d -p 8443:8443 --name nifi apache/nifi:latest
通过 https://localhost:8443/nifi 安全访问NiFi UI,开始构建全企业级的数据流。强大的处理器库可支持从简单文件操作到复杂API集成。
5. Trino(原Presto SQL):分布式SQL查询引擎
Trino是一款分布式SQL查询引擎,可同时查询Hadoop、对象存储、关系型与NoSQL数据库的数据。
它完美解决了数据联邦问题,让你无需迁移数据,即可跨多源执行高速分析查询。
主要特性:
-
跨多种数据库与数据存储源查询数据
-
支持PostgreSQL、MySQL、MongoDB等多种连接
-
分布式执行,处理海量数据
拉取与运行方法:
$ docker pull trinodb/trino:latest
$ docker run -d -p 8080:8080 --name trino trinodb/trino:latest
访问 http://localhost:8080 的Trino UI,即可在单一界面上跨所有数据源执行查询。
6. MinIO:对象存储
MinIO提供兼容S3的对象存储,是打造数据湖或存储非结构化数据的理想选择。
你可以在本地或私有环境中获得类似云端的存储能力,与Amazon S3 API完全兼容,完全掌控数据。
主要特性:
-
高效存储海量非结构化数据
-
兼容Amazon S3 API,便于集成
-
性能足以满足AI/ML工作负载
拉取与运行方法:
$ docker pull minio/minio
$ docker run -d -p 9000:9000 -p 9001:9001 --name minio minio/minio server /data --console-address ":9001"
通过 http://localhost:9001 进入MinIO控制台,默认账号/密码为minioadmin/minioadmin。你可立即创建bucket并上传文件。
MinIO也可通过Podman运行。
7. Metabase:数据可视化
Metabase是一款直观的商业智能与可视化工具,可轻松连接各类数据库。
它让组织内任何成员都能通过友好界面探索数据、创建仪表盘。
主要特性:
-
无需代码即可搭建图表与仪表盘
-
SQL编辑器,满足高级用户自定义查询
-
定时报告与邮件/Slack推送
-
仪表盘嵌入,便于集成到其他应用
拉取与运行方法:
$ docker pull metabase/metabase
$ docker run -d -p 3000:3000 --name metabase metabase/metabase
通过 http://localhost:3000 访问Metabase,并根据向导连接数据源。几分钟内即可开始可视化分析,洞察数据价值。
总结
数据工程无需复杂繁琐。有了这些必备Docker容器,你可以跳过繁琐的搭建步骤,将精力聚焦于为企业创造价值的数据管道。
每个组件既可独立使用,组合后则能构建更完善的数据技术栈。
最棒的是?借助Docker Compose,整个环境10分钟内即可部署完毕,咖啡都还没凉,一切就绪,随时投入生产!
你认为数据工程领域还有哪些不可或缺的Docker容器?欢迎评论区分享你的看法!